An algorithm for verifying some norm identities in inner-product spaces

In this paper, we provide an algorithm for verifying the validity of identities of the form ∑A⊆n¯cA‖xA‖2=0, where xA=∑i∈Axi and n¯={1,⋯,n} in inner-product spaces. Such algorithm is used to verify the validity, in inner-product spaces, for a number of identities. These include a generalization of th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Muneerah Al Nuwairan
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/883924151a854d3cad31bce153e0f5d1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:883924151a854d3cad31bce153e0f5d1
record_format dspace
spelling oai:doaj.org-article:883924151a854d3cad31bce153e0f5d12021-11-18T04:43:54ZAn algorithm for verifying some norm identities in inner-product spaces1018-364710.1016/j.jksus.2021.101598https://doaj.org/article/883924151a854d3cad31bce153e0f5d12021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1018364721002603https://doaj.org/toc/1018-3647In this paper, we provide an algorithm for verifying the validity of identities of the form ∑A⊆n¯cA‖xA‖2=0, where xA=∑i∈Axi and n¯={1,⋯,n} in inner-product spaces. Such algorithm is used to verify the validity, in inner-product spaces, for a number of identities. These include a generalization of the parallelepiped law. We also show that such identities hold only in inner-product spaces. Thus, the algorithm can be used to deduce characterizations of inner-product spaces.Muneerah Al NuwairanElsevierarticleInner productNormParallelogram identityParallelepiped lawBinomial coefficientScience (General)Q1-390ENJournal of King Saud University: Science, Vol 33, Iss 8, Pp 101598- (2021)
institution DOAJ
collection DOAJ
language EN
topic Inner product
Norm
Parallelogram identity
Parallelepiped law
Binomial coefficient
Science (General)
Q1-390
spellingShingle Inner product
Norm
Parallelogram identity
Parallelepiped law
Binomial coefficient
Science (General)
Q1-390
Muneerah Al Nuwairan
An algorithm for verifying some norm identities in inner-product spaces
description In this paper, we provide an algorithm for verifying the validity of identities of the form ∑A⊆n¯cA‖xA‖2=0, where xA=∑i∈Axi and n¯={1,⋯,n} in inner-product spaces. Such algorithm is used to verify the validity, in inner-product spaces, for a number of identities. These include a generalization of the parallelepiped law. We also show that such identities hold only in inner-product spaces. Thus, the algorithm can be used to deduce characterizations of inner-product spaces.
format article
author Muneerah Al Nuwairan
author_facet Muneerah Al Nuwairan
author_sort Muneerah Al Nuwairan
title An algorithm for verifying some norm identities in inner-product spaces
title_short An algorithm for verifying some norm identities in inner-product spaces
title_full An algorithm for verifying some norm identities in inner-product spaces
title_fullStr An algorithm for verifying some norm identities in inner-product spaces
title_full_unstemmed An algorithm for verifying some norm identities in inner-product spaces
title_sort algorithm for verifying some norm identities in inner-product spaces
publisher Elsevier
publishDate 2021
url https://doaj.org/article/883924151a854d3cad31bce153e0f5d1
work_keys_str_mv AT muneerahalnuwairan analgorithmforverifyingsomenormidentitiesininnerproductspaces
AT muneerahalnuwairan algorithmforverifyingsomenormidentitiesininnerproductspaces
_version_ 1718425113399918592