Exploring patterns enriched in a dataset with contrastive principal component analysis

Dimensionality reduction and visualization methods lack a principled way of comparing multiple datasets. Here, Abid et al. introduce contrastive PCA, which identifies low-dimensional structures enriched in one dataset compared to another and enables visualization of dataset-specific patterns.

Guardado en:
Detalles Bibliográficos
Autores principales: Abubakar Abid, Martin J. Zhang, Vivek K. Bagaria, James Zou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/8845cf8ea83f43f89475a0ca1faff78b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Dimensionality reduction and visualization methods lack a principled way of comparing multiple datasets. Here, Abid et al. introduce contrastive PCA, which identifies low-dimensional structures enriched in one dataset compared to another and enables visualization of dataset-specific patterns.