Exploring patterns enriched in a dataset with contrastive principal component analysis
Dimensionality reduction and visualization methods lack a principled way of comparing multiple datasets. Here, Abid et al. introduce contrastive PCA, which identifies low-dimensional structures enriched in one dataset compared to another and enables visualization of dataset-specific patterns.
Guardado en:
Autores principales: | Abubakar Abid, Martin J. Zhang, Vivek K. Bagaria, James Zou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8845cf8ea83f43f89475a0ca1faff78b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
por: Hamed Akbari, et al.
Publicado: (2021) -
Robust Bilinear Probabilistic Principal Component Analysis
por: Yaohang Lu, et al.
Publicado: (2021) -
Principal components analysis for mixtures with varying concentrations
por: Olena Sugakova, et al.
Publicado: (2021) -
Quantifying Topographic Ruggedness Using Principal Component Analysis
por: Maan Habib
Publicado: (2021) -
PRINCIPAL COMPONENT ANALYSIS OF MORPHOSTRUCTURAL INDICES OF NOILER CHICKENS
por: ABEL OLUSEGUN OGUNTUNJI, et al.
Publicado: (2021)