Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential

Hydrogen has multiple molecular phases which are challenging to explore computationally. The authors develop a machine-learning approach, learning from reference ab initio molecular dynamics simulations, to derive a transferable hierarchical force model that provides insight into high pressure phase...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hongxiang Zong, Heather Wiebe, Graeme J. Ackland
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/8847e5d5db8d47119e4a8c692d3ed252
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8847e5d5db8d47119e4a8c692d3ed252
record_format dspace
spelling oai:doaj.org-article:8847e5d5db8d47119e4a8c692d3ed2522021-12-02T16:56:44ZUnderstanding high pressure molecular hydrogen with a hierarchical machine-learned potential10.1038/s41467-020-18788-92041-1723https://doaj.org/article/8847e5d5db8d47119e4a8c692d3ed2522020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18788-9https://doaj.org/toc/2041-1723Hydrogen has multiple molecular phases which are challenging to explore computationally. The authors develop a machine-learning approach, learning from reference ab initio molecular dynamics simulations, to derive a transferable hierarchical force model that provides insight into high pressure phases and the melting line of H2.Hongxiang ZongHeather WiebeGraeme J. AcklandNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Hongxiang Zong
Heather Wiebe
Graeme J. Ackland
Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
description Hydrogen has multiple molecular phases which are challenging to explore computationally. The authors develop a machine-learning approach, learning from reference ab initio molecular dynamics simulations, to derive a transferable hierarchical force model that provides insight into high pressure phases and the melting line of H2.
format article
author Hongxiang Zong
Heather Wiebe
Graeme J. Ackland
author_facet Hongxiang Zong
Heather Wiebe
Graeme J. Ackland
author_sort Hongxiang Zong
title Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
title_short Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
title_full Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
title_fullStr Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
title_full_unstemmed Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
title_sort understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/8847e5d5db8d47119e4a8c692d3ed252
work_keys_str_mv AT hongxiangzong understandinghighpressuremolecularhydrogenwithahierarchicalmachinelearnedpotential
AT heatherwiebe understandinghighpressuremolecularhydrogenwithahierarchicalmachinelearnedpotential
AT graemejackland understandinghighpressuremolecularhydrogenwithahierarchicalmachinelearnedpotential
_version_ 1718382751947685888