Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
Hydrogen has multiple molecular phases which are challenging to explore computationally. The authors develop a machine-learning approach, learning from reference ab initio molecular dynamics simulations, to derive a transferable hierarchical force model that provides insight into high pressure phase...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8847e5d5db8d47119e4a8c692d3ed252 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8847e5d5db8d47119e4a8c692d3ed252 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8847e5d5db8d47119e4a8c692d3ed2522021-12-02T16:56:44ZUnderstanding high pressure molecular hydrogen with a hierarchical machine-learned potential10.1038/s41467-020-18788-92041-1723https://doaj.org/article/8847e5d5db8d47119e4a8c692d3ed2522020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18788-9https://doaj.org/toc/2041-1723Hydrogen has multiple molecular phases which are challenging to explore computationally. The authors develop a machine-learning approach, learning from reference ab initio molecular dynamics simulations, to derive a transferable hierarchical force model that provides insight into high pressure phases and the melting line of H2.Hongxiang ZongHeather WiebeGraeme J. AcklandNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Hongxiang Zong Heather Wiebe Graeme J. Ackland Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential |
description |
Hydrogen has multiple molecular phases which are challenging to explore computationally. The authors develop a machine-learning approach, learning from reference ab initio molecular dynamics simulations, to derive a transferable hierarchical force model that provides insight into high pressure phases and the melting line of H2. |
format |
article |
author |
Hongxiang Zong Heather Wiebe Graeme J. Ackland |
author_facet |
Hongxiang Zong Heather Wiebe Graeme J. Ackland |
author_sort |
Hongxiang Zong |
title |
Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential |
title_short |
Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential |
title_full |
Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential |
title_fullStr |
Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential |
title_full_unstemmed |
Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential |
title_sort |
understanding high pressure molecular hydrogen with a hierarchical machine-learned potential |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/8847e5d5db8d47119e4a8c692d3ed252 |
work_keys_str_mv |
AT hongxiangzong understandinghighpressuremolecularhydrogenwithahierarchicalmachinelearnedpotential AT heatherwiebe understandinghighpressuremolecularhydrogenwithahierarchicalmachinelearnedpotential AT graemejackland understandinghighpressuremolecularhydrogenwithahierarchicalmachinelearnedpotential |
_version_ |
1718382751947685888 |