Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
Hydrogen has multiple molecular phases which are challenging to explore computationally. The authors develop a machine-learning approach, learning from reference ab initio molecular dynamics simulations, to derive a transferable hierarchical force model that provides insight into high pressure phase...
Guardado en:
Autores principales: | Hongxiang Zong, Heather Wiebe, Graeme J. Ackland |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8847e5d5db8d47119e4a8c692d3ed252 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Design of English hierarchical online test system based on machine learning
por: Wang Xiahui, et al.
Publicado: (2021) -
Hierarchical motor control in mammals and machines
por: Josh Merel, et al.
Publicado: (2019) -
Designing and understanding light-harvesting devices with machine learning
por: Florian Häse, et al.
Publicado: (2020) -
Ultrasensitive Hierarchical Piezoresistive Pressure Sensor for Wide‐Range Pressure Detection
por: Jing Li, et al.
Publicado: (2021) -
Understanding hydrogen-bonding structures of molecular crystals via electron and NMR nanocrystallography
por: Candelaria Guzmán-Afonso, et al.
Publicado: (2019)