Understanding high pressure molecular hydrogen with a hierarchical machine-learned potential
Hydrogen has multiple molecular phases which are challenging to explore computationally. The authors develop a machine-learning approach, learning from reference ab initio molecular dynamics simulations, to derive a transferable hierarchical force model that provides insight into high pressure phase...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8847e5d5db8d47119e4a8c692d3ed252 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!