Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models
Genetic prediction of complex traits with polygenic architecture has wide application from animal breeding to disease prevention. Here, Zeng and Zhou develop a non-parametric genetic prediction method based on latent Dirichlet Process regression models.
Guardado en:
Autores principales: | Ping Zeng, Xiang Zhou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8859acd6efc645b699dcf8c04c6481c5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
por: Lu Cheng, et al.
Publicado: (2019) -
Airbnb rental price modeling based on Latent Dirichlet Allocation and MESF-XGBoost composite model
por: Md Didarul Islam, et al.
Publicado: (2022) -
Investigation of Emerging Trends in the E-Learning Field Using Latent Dirichlet Allocation
por: Fatih Gurcan, et al.
Publicado: (2021) -
Pemodelan topik pada dokumen paten terkait pupuk di Indonesia berbasis Latent Dirichlet Allocation
por: Aris Yaman, et al.
Publicado: (2021) -
Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling
por: Mohammad Hadi Dehghani, et al.
Publicado: (2021)