Transfer Learning Applied to Characteristic Prediction of Injection Molded Products
This study addresses some issues regarding the problems of applying CAE to the injection molding production process where quite complex factors inhibit its effective utilization. In this study, an artificial neural network, namely a backpropagation neural network (BPNN), is utilized to render result...
Guardado en:
Autores principales: | Yan-Mao Huang, Wen-Ren Jong, Shia-Chung Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/88904077b7fc4856a55c5cbec3aaa53e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multiscale Modeling and Simulation of Polymer Blends in Injection Molding: A Review
por: Lin Deng, et al.
Publicado: (2021) -
Insights on the Molecular Behavior of Polypropylene in the Process of Ultrasonic Injection Molding
por: Jackeline Iturbe-Ek, et al.
Publicado: (2021) -
Numerical Simulation and Experimental Validation of Hybrid Injection Molded Short and Continuous Fiber-Reinforced Thermoplastic Composites
por: Patrick Hirsch, et al.
Publicado: (2021) -
The Influence of Chosen Plant Fillers in PHBV Composites on the Processing Conditions, Mechanical Properties and Quality of Molded Pieces
por: Wiesław Frącz, et al.
Publicado: (2021) -
Extrusion and Injection Molding of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) (PHBHHx): Influence of Processing Conditions on Mechanical Properties and Microstructure
por: Chris Vanheusden, et al.
Publicado: (2021)