Transfer Learning Applied to Characteristic Prediction of Injection Molded Products
This study addresses some issues regarding the problems of applying CAE to the injection molding production process where quite complex factors inhibit its effective utilization. In this study, an artificial neural network, namely a backpropagation neural network (BPNN), is utilized to render result...
Enregistré dans:
Auteurs principaux: | Yan-Mao Huang, Wen-Ren Jong, Shia-Chung Chen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/88904077b7fc4856a55c5cbec3aaa53e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Multiscale Modeling and Simulation of Polymer Blends in Injection Molding: A Review
par: Lin Deng, et autres
Publié: (2021) -
Insights on the Molecular Behavior of Polypropylene in the Process of Ultrasonic Injection Molding
par: Jackeline Iturbe-Ek, et autres
Publié: (2021) -
Numerical Simulation and Experimental Validation of Hybrid Injection Molded Short and Continuous Fiber-Reinforced Thermoplastic Composites
par: Patrick Hirsch, et autres
Publié: (2021) -
The Influence of Chosen Plant Fillers in PHBV Composites on the Processing Conditions, Mechanical Properties and Quality of Molded Pieces
par: Wiesław Frącz, et autres
Publié: (2021) -
Extrusion and Injection Molding of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) (PHBHHx): Influence of Processing Conditions on Mechanical Properties and Microstructure
par: Chris Vanheusden, et autres
Publié: (2021)