Convolutional neural network-assisted recognition of nanoscale L12 ordered structures in face-centred cubic alloys
Abstract Nanoscale L12-type ordered structures are widely used in face-centered cubic (FCC) alloys to exploit their hardening capacity and thereby improve mechanical properties. These fine-scale particles are typically fully coherent with matrix with the same atomic configuration disregarding chemic...
Guardado en:
Autores principales: | Yue Li, Xuyang Zhou, Timoteo Colnaghi, Ye Wei, Andreas Marek, Hongxiang Li, Stefan Bauer, Markus Rampp, Leigh T. Stephenson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8891f358ab0b465da127046801a0859a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys
por: B. Steingrimsson, et al.
Publicado: (2021) -
High energy barriers for edge dislocation motion in body-centered cubic high entropy alloys
por: R. E. Kubilay, et al.
Publicado: (2021) -
Author Correction: High energy barriers for edge dislocation motion in body-centered cubic high entropy alloys
por: R. E. Kubilay, et al.
Publicado: (2021) -
Toward room-temperature nanoscale skyrmions in ultrathin films
por: Anastasiia S. Varentcova, et al.
Publicado: (2020) -
Machine-learned interatomic potentials for alloys and alloy phase diagrams
por: Conrad W. Rosenbrock, et al.
Publicado: (2021)