Vaporization, Diffusion and Combustion of Laser-Induced Individual Magnesium Microparticles in Inert and Oxidizing Atmospheres
Although the gas phase combustion of metallic magnesium (Mg) has been extensively studied, the vaporization and diffusive combustion behaviors of Mg have not been well characterized. This paper proposes an investigation of the vaporization, diffusion, and combustion characteristics of individual Mg...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/889b9e51b9624a99ad7f70782ab1ce9b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:889b9e51b9624a99ad7f70782ab1ce9b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:889b9e51b9624a99ad7f70782ab1ce9b2021-11-25T18:51:51ZVaporization, Diffusion and Combustion of Laser-Induced Individual Magnesium Microparticles in Inert and Oxidizing Atmospheres10.3390/pr91120572227-9717https://doaj.org/article/889b9e51b9624a99ad7f70782ab1ce9b2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-9717/9/11/2057https://doaj.org/toc/2227-9717Although the gas phase combustion of metallic magnesium (Mg) has been extensively studied, the vaporization and diffusive combustion behaviors of Mg have not been well characterized. This paper proposes an investigation of the vaporization, diffusion, and combustion characteristics of individual Mg microparticles in inert and oxidizing gases by a self-built experimental setup based on laser-induced heating and microscopic high-speed cinematography. Characteristic parameters like vaporization and diffusion coefficients, diffusion ratios, flame propagation rates, etc., were obtained at high spatiotemporal resolutions (μm and tens of μs), and their differences in inert gases (argon, nitrogen) and in oxidizing gases (air, pure oxygen) were comparatively analyzed. More importantly, for the core–shell structure, during vaporization, a shock wave effect on the cracking of the porous magnesium oxide thin film shell-covered Mg core was first experimentally revealed in inert gases. In air, the combustion flame stood over the Mg microparticles, and the heterogeneous combustion reaction was controlled by the diffusion rate of oxygen in air. While in pure O<sub>2</sub>, the vapor-phase stand-off flame surrounded the Mg microparticles, and the reaction was dominated by the diffusion rate of Mg vapor. The diffusion coefficients of the Mg vapor in oxidizing gases are 1~2 orders of magnitude higher than those in inert gases. However, the diffusive ratios of condensed combustion residues in oxidizing gases are ~1/2 of those in inert gases. The morphology and the constituent contents analysis showed that argon would not dissolve into liquid Mg, while nitrogen would significantly dissolve into liquid Mg. In oxidizing gases of air or pure O<sub>2</sub>, Mg microparticles in normal pressure completely burned due to laser-induced heating.Fan YangShengji LiXunjie LinJiankan ZhangHeping LiXuefeng HuangJiangrong XuMDPI AGarticlesolid propellantsmetallic MgvaporizationdiffusioncombustionChemical technologyTP1-1185ChemistryQD1-999ENProcesses, Vol 9, Iss 2057, p 2057 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
solid propellants metallic Mg vaporization diffusion combustion Chemical technology TP1-1185 Chemistry QD1-999 |
spellingShingle |
solid propellants metallic Mg vaporization diffusion combustion Chemical technology TP1-1185 Chemistry QD1-999 Fan Yang Shengji Li Xunjie Lin Jiankan Zhang Heping Li Xuefeng Huang Jiangrong Xu Vaporization, Diffusion and Combustion of Laser-Induced Individual Magnesium Microparticles in Inert and Oxidizing Atmospheres |
description |
Although the gas phase combustion of metallic magnesium (Mg) has been extensively studied, the vaporization and diffusive combustion behaviors of Mg have not been well characterized. This paper proposes an investigation of the vaporization, diffusion, and combustion characteristics of individual Mg microparticles in inert and oxidizing gases by a self-built experimental setup based on laser-induced heating and microscopic high-speed cinematography. Characteristic parameters like vaporization and diffusion coefficients, diffusion ratios, flame propagation rates, etc., were obtained at high spatiotemporal resolutions (μm and tens of μs), and their differences in inert gases (argon, nitrogen) and in oxidizing gases (air, pure oxygen) were comparatively analyzed. More importantly, for the core–shell structure, during vaporization, a shock wave effect on the cracking of the porous magnesium oxide thin film shell-covered Mg core was first experimentally revealed in inert gases. In air, the combustion flame stood over the Mg microparticles, and the heterogeneous combustion reaction was controlled by the diffusion rate of oxygen in air. While in pure O<sub>2</sub>, the vapor-phase stand-off flame surrounded the Mg microparticles, and the reaction was dominated by the diffusion rate of Mg vapor. The diffusion coefficients of the Mg vapor in oxidizing gases are 1~2 orders of magnitude higher than those in inert gases. However, the diffusive ratios of condensed combustion residues in oxidizing gases are ~1/2 of those in inert gases. The morphology and the constituent contents analysis showed that argon would not dissolve into liquid Mg, while nitrogen would significantly dissolve into liquid Mg. In oxidizing gases of air or pure O<sub>2</sub>, Mg microparticles in normal pressure completely burned due to laser-induced heating. |
format |
article |
author |
Fan Yang Shengji Li Xunjie Lin Jiankan Zhang Heping Li Xuefeng Huang Jiangrong Xu |
author_facet |
Fan Yang Shengji Li Xunjie Lin Jiankan Zhang Heping Li Xuefeng Huang Jiangrong Xu |
author_sort |
Fan Yang |
title |
Vaporization, Diffusion and Combustion of Laser-Induced Individual Magnesium Microparticles in Inert and Oxidizing Atmospheres |
title_short |
Vaporization, Diffusion and Combustion of Laser-Induced Individual Magnesium Microparticles in Inert and Oxidizing Atmospheres |
title_full |
Vaporization, Diffusion and Combustion of Laser-Induced Individual Magnesium Microparticles in Inert and Oxidizing Atmospheres |
title_fullStr |
Vaporization, Diffusion and Combustion of Laser-Induced Individual Magnesium Microparticles in Inert and Oxidizing Atmospheres |
title_full_unstemmed |
Vaporization, Diffusion and Combustion of Laser-Induced Individual Magnesium Microparticles in Inert and Oxidizing Atmospheres |
title_sort |
vaporization, diffusion and combustion of laser-induced individual magnesium microparticles in inert and oxidizing atmospheres |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/889b9e51b9624a99ad7f70782ab1ce9b |
work_keys_str_mv |
AT fanyang vaporizationdiffusionandcombustionoflaserinducedindividualmagnesiummicroparticlesininertandoxidizingatmospheres AT shengjili vaporizationdiffusionandcombustionoflaserinducedindividualmagnesiummicroparticlesininertandoxidizingatmospheres AT xunjielin vaporizationdiffusionandcombustionoflaserinducedindividualmagnesiummicroparticlesininertandoxidizingatmospheres AT jiankanzhang vaporizationdiffusionandcombustionoflaserinducedindividualmagnesiummicroparticlesininertandoxidizingatmospheres AT hepingli vaporizationdiffusionandcombustionoflaserinducedindividualmagnesiummicroparticlesininertandoxidizingatmospheres AT xuefenghuang vaporizationdiffusionandcombustionoflaserinducedindividualmagnesiummicroparticlesininertandoxidizingatmospheres AT jiangrongxu vaporizationdiffusionandcombustionoflaserinducedindividualmagnesiummicroparticlesininertandoxidizingatmospheres |
_version_ |
1718410600351006720 |