Machine Learning-Based Prediction of Drug-Drug Interactions for Histamine Antagonist Using Hybrid Chemical Features
The requesting of detailed information on new drugs including drug-drug interactions or targets is often unavailable and resource-intensive in assessing adverse drug events. To shorten the common evaluation process of drug-drug interactions, we present a machine learning framework-HAINI to predict D...
Guardado en:
Autores principales: | Luong Huu Dang, Nguyen Tan Dung, Ly Xuan Quang, Le Quang Hung, Ngoc Hoang Le, Nhi Thao Ngoc Le, Nguyen Thi Diem, Nguyen Thi Thuy Nga, Shih-Han Hung, Nguyen Quoc Khanh Le |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/889f42ba036d454b8b4c79b71c362bcb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Drug discovery today.
Publicado: (2004) -
Histamine formation and microbiological changes in endemic Chalcalburnus tarichi Pallas 1811 (Inci Kefali) stored at 4 °C
por: Ekici,K, et al.
Publicado: (2008) -
Simultaneous recovery of phosphorus and nitrogen from inorganic fertilizer wastewater
por: Dinh Huu Phu, et al.
Publicado: (2021) -
Cheminformatics
Publicado: (2004) -
Mitochondrial Genotoxicity of Hepatitis C Treatment among People Who Inject Drugs
por: Mélusine Durand, et al.
Publicado: (2021)