Ultrahigh Sensitivity of a Plasmonic Pressure Sensor with a Compact Size

This study proposes a compact plasmonic metal-insulator-metal pressure sensor comprising a bus waveguide and a resonator, including one horizontal slot and several stubs. We calculate the transmittance spectrum and the electromagnetic field distribution using the finite element method. When the reso...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chung-Ting Chou Chao, Yuan-Fong Chou Chau, Sy-Hann Chen, Hung Ji Huang, Chee Ming Lim, Muhammad Raziq Rahimi Kooh, Roshan Thotagamuge, Hai-Pang Chiang
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/88a1d189eb3c45a1832b0957ea44fb05
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This study proposes a compact plasmonic metal-insulator-metal pressure sensor comprising a bus waveguide and a resonator, including one horizontal slot and several stubs. We calculate the transmittance spectrum and the electromagnetic field distribution using the finite element method. When the resonator’s top layer undergoes pressure, the resonance wavelength redshifts with increasing deformation, and their relation is nearly linear. The designed pressure sensor possesses the merits of ultrahigh sensitivity, multiple modes, and a simple structure. The maximum sensitivity and resonance wavelength shift can achieve 592.44 nm/MPa and 364 nm, respectively, which are the highest values to our knowledge. The obtained sensitivity shows 23.32 times compared to the highest one reported in the literature. The modeled design paves a promising path for applications in the nanophotonic field.