Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells
Abstract The electron transport layer (ETL) is a key component of regular perovskite solar cells to promote the overall charge extraction efficiency and tune the crystallinity of the perovskite layer for better device performance. The authors present a novel protocol of ETL engineering by incorporat...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/88a38145edd54f6c927554175cdfc454 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:88a38145edd54f6c927554175cdfc454 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:88a38145edd54f6c927554175cdfc4542021-11-17T08:40:31ZPrecursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells2198-384410.1002/advs.202102845https://doaj.org/article/88a38145edd54f6c927554175cdfc4542021-11-01T00:00:00Zhttps://doi.org/10.1002/advs.202102845https://doaj.org/toc/2198-3844Abstract The electron transport layer (ETL) is a key component of regular perovskite solar cells to promote the overall charge extraction efficiency and tune the crystallinity of the perovskite layer for better device performance. The authors present a novel protocol of ETL engineering by incorporating a composition of the perovskite precursor, methylammonium chloride (MACl), or formamidine chloride (FACl), into SnO2 layers, which are then converted into the crystal nuclei of perovskites by reaction with PbI2. The SnO2‐embedded nuclei remarkably improve the morphology and crystallinity of the optically active perovskite layers. The improved ETL‐to‐perovskite electrical contact and dense packing of large‐grained perovskites enhance the carrier mobility and suppress charge recombination. The power conversion efficiency increases from 20.12% (blank device) to 21.87% (21.72%) for devices with MACl (FACl) as an ETL dopant. Moreover, all the precursor‐engineered cells exhibit a record‐high fill factor (82%).Zhichao LinWenqi ZhangQingbin CaiXiangning XuHongye DongCheng MuJian‐Ping ZhangWileyarticlecharge transferdopingelectron transport layersperovskite solar cellsprecursorsScienceQENAdvanced Science, Vol 8, Iss 22, Pp n/a-n/a (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
charge transfer doping electron transport layers perovskite solar cells precursors Science Q |
spellingShingle |
charge transfer doping electron transport layers perovskite solar cells precursors Science Q Zhichao Lin Wenqi Zhang Qingbin Cai Xiangning Xu Hongye Dong Cheng Mu Jian‐Ping Zhang Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells |
description |
Abstract The electron transport layer (ETL) is a key component of regular perovskite solar cells to promote the overall charge extraction efficiency and tune the crystallinity of the perovskite layer for better device performance. The authors present a novel protocol of ETL engineering by incorporating a composition of the perovskite precursor, methylammonium chloride (MACl), or formamidine chloride (FACl), into SnO2 layers, which are then converted into the crystal nuclei of perovskites by reaction with PbI2. The SnO2‐embedded nuclei remarkably improve the morphology and crystallinity of the optically active perovskite layers. The improved ETL‐to‐perovskite electrical contact and dense packing of large‐grained perovskites enhance the carrier mobility and suppress charge recombination. The power conversion efficiency increases from 20.12% (blank device) to 21.87% (21.72%) for devices with MACl (FACl) as an ETL dopant. Moreover, all the precursor‐engineered cells exhibit a record‐high fill factor (82%). |
format |
article |
author |
Zhichao Lin Wenqi Zhang Qingbin Cai Xiangning Xu Hongye Dong Cheng Mu Jian‐Ping Zhang |
author_facet |
Zhichao Lin Wenqi Zhang Qingbin Cai Xiangning Xu Hongye Dong Cheng Mu Jian‐Ping Zhang |
author_sort |
Zhichao Lin |
title |
Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells |
title_short |
Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells |
title_full |
Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells |
title_fullStr |
Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells |
title_full_unstemmed |
Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells |
title_sort |
precursor engineering of the electron transport layer for application in high‐performance perovskite solar cells |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/88a38145edd54f6c927554175cdfc454 |
work_keys_str_mv |
AT zhichaolin precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells AT wenqizhang precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells AT qingbincai precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells AT xiangningxu precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells AT hongyedong precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells AT chengmu precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells AT jianpingzhang precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells |
_version_ |
1718425682689654784 |