Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells

Abstract The electron transport layer (ETL) is a key component of regular perovskite solar cells to promote the overall charge extraction efficiency and tune the crystallinity of the perovskite layer for better device performance. The authors present a novel protocol of ETL engineering by incorporat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhichao Lin, Wenqi Zhang, Qingbin Cai, Xiangning Xu, Hongye Dong, Cheng Mu, Jian‐Ping Zhang
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/88a38145edd54f6c927554175cdfc454
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:88a38145edd54f6c927554175cdfc454
record_format dspace
spelling oai:doaj.org-article:88a38145edd54f6c927554175cdfc4542021-11-17T08:40:31ZPrecursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells2198-384410.1002/advs.202102845https://doaj.org/article/88a38145edd54f6c927554175cdfc4542021-11-01T00:00:00Zhttps://doi.org/10.1002/advs.202102845https://doaj.org/toc/2198-3844Abstract The electron transport layer (ETL) is a key component of regular perovskite solar cells to promote the overall charge extraction efficiency and tune the crystallinity of the perovskite layer for better device performance. The authors present a novel protocol of ETL engineering by incorporating a composition of the perovskite precursor, methylammonium chloride (MACl), or formamidine chloride (FACl), into SnO2 layers, which are then converted into the crystal nuclei of perovskites by reaction with PbI2. The SnO2‐embedded nuclei remarkably improve the morphology and crystallinity of the optically active perovskite layers. The improved ETL‐to‐perovskite electrical contact and dense packing of large‐grained perovskites enhance the carrier mobility and suppress charge recombination. The power conversion efficiency increases from 20.12% (blank device) to 21.87% (21.72%) for devices with MACl (FACl) as an ETL dopant. Moreover, all the precursor‐engineered cells exhibit a record‐high fill factor (82%).Zhichao LinWenqi ZhangQingbin CaiXiangning XuHongye DongCheng MuJian‐Ping ZhangWileyarticlecharge transferdopingelectron transport layersperovskite solar cellsprecursorsScienceQENAdvanced Science, Vol 8, Iss 22, Pp n/a-n/a (2021)
institution DOAJ
collection DOAJ
language EN
topic charge transfer
doping
electron transport layers
perovskite solar cells
precursors
Science
Q
spellingShingle charge transfer
doping
electron transport layers
perovskite solar cells
precursors
Science
Q
Zhichao Lin
Wenqi Zhang
Qingbin Cai
Xiangning Xu
Hongye Dong
Cheng Mu
Jian‐Ping Zhang
Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells
description Abstract The electron transport layer (ETL) is a key component of regular perovskite solar cells to promote the overall charge extraction efficiency and tune the crystallinity of the perovskite layer for better device performance. The authors present a novel protocol of ETL engineering by incorporating a composition of the perovskite precursor, methylammonium chloride (MACl), or formamidine chloride (FACl), into SnO2 layers, which are then converted into the crystal nuclei of perovskites by reaction with PbI2. The SnO2‐embedded nuclei remarkably improve the morphology and crystallinity of the optically active perovskite layers. The improved ETL‐to‐perovskite electrical contact and dense packing of large‐grained perovskites enhance the carrier mobility and suppress charge recombination. The power conversion efficiency increases from 20.12% (blank device) to 21.87% (21.72%) for devices with MACl (FACl) as an ETL dopant. Moreover, all the precursor‐engineered cells exhibit a record‐high fill factor (82%).
format article
author Zhichao Lin
Wenqi Zhang
Qingbin Cai
Xiangning Xu
Hongye Dong
Cheng Mu
Jian‐Ping Zhang
author_facet Zhichao Lin
Wenqi Zhang
Qingbin Cai
Xiangning Xu
Hongye Dong
Cheng Mu
Jian‐Ping Zhang
author_sort Zhichao Lin
title Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells
title_short Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells
title_full Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells
title_fullStr Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells
title_full_unstemmed Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells
title_sort precursor engineering of the electron transport layer for application in high‐performance perovskite solar cells
publisher Wiley
publishDate 2021
url https://doaj.org/article/88a38145edd54f6c927554175cdfc454
work_keys_str_mv AT zhichaolin precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells
AT wenqizhang precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells
AT qingbincai precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells
AT xiangningxu precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells
AT hongyedong precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells
AT chengmu precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells
AT jianpingzhang precursorengineeringoftheelectrontransportlayerforapplicationinhighperformanceperovskitesolarcells
_version_ 1718425682689654784