Machine learning-based glucose prediction with use of continuous glucose and physical activity monitoring data: The Maastricht Study.
<h4>Background</h4>Closed-loop insulin delivery systems, which integrate continuous glucose monitoring (CGM) and algorithms that continuously guide insulin dosing, have been shown to improve glycaemic control. The ability to predict future glucose values can further optimize such devices...
Guardado en:
Autores principales: | William P T M van Doorn, Yuri D Foreman, Nicolaas C Schaper, Hans H C M Savelberg, Annemarie Koster, Carla J H van der Kallen, Anke Wesselius, Miranda T Schram, Ronald M A Henry, Pieter C Dagnelie, Bastiaan E de Galan, Otto Bekers, Coen D A Stehouwer, Steven J R Meex, Martijn C G J Brouwers |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/88bd2757586d419c87a53793150f0af3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Troponin I and T in relation to cardiac injury detected with electrocardiography in a population-based cohort - The Maastricht Study
por: Dorien M. Kimenai, et al.
Publicado: (2017) -
Conference Review: the EAA 2017 in Maastricht (NL)
por: Roeland P Paardekooper
Publicado: (2017) -
Resolving the sources of plasma glucose excursions following a glucose tolerance test in the rat with deuterated water and [U-13C]glucose.
por: Teresa C Delgado, et al.
Publicado: (2012) -
Biosensing of DNA oxidative damage: a model of using glucose meter for non-glucose biomarker detection
por: Zhu X, et al.
Publicado: (2017) -
Impact of glucose excursion and mean glucose concentration in oral glucose-tolerance test on oxidative stress among Japanese Americans
por: Nakanishi S, et al.
Publicado: (2013)