Classification for Breast Ultrasound Using Convolutional Neural Network with Multiple Time-Domain Feature Maps
Ultrasound (US) imaging is widely utilized as a diagnostic screening method, and deep learning has recently drawn attention for the analysis of US images for the pathological status of tissues. While low image quality and poor reproducibility are the common obstacles in US analysis, the small size o...
Guardado en:
Autores principales: | Hyungsuk Kim, Juyoung Park, Hakjoon Lee, Geuntae Im, Jongsoo Lee, Ki-Baek Lee, Heung Jae Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/890fb61d22b74595ab69b870c3c0e465 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images
por: He Ma, et al.
Publicado: (2021) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
por: Leiyu Chen, et al.
Publicado: (2021) -
Targeted Fe-doped silica nanoparticles as a novel ultrasound–magnetic resonance dual-mode imaging contrast agent for HER2-positive breast cancer
por: Li X, et al.
Publicado: (2019) -
AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
por: Bekhzod Olimov, et al.
Publicado: (2021) -
Entropy-Based Combined Metric for Automatic Objective Quality Assessment of Stitched Panoramic Images
por: Krzysztof Okarma, et al.
Publicado: (2021)