Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe
Abstract Heat transfer augmentation of the nanofluids is still an attractive concept for researchers due to rising demands for designing efficient heat transfer fluids. However, the pressure loss arisen from the suspension of nanoparticles in liquid is known as a drawback for developing such novel f...
Guardado en:
Autores principales: | Meisam Babanezhad, Iman Behroyan, Ali Taghvaie Nakhjiri, Azam Marjani, Saeed Shirazian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8913976422284cb39d02100a8a622625 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Velocity prediction of nanofluid in a heated porous pipe: DEFIS learning of CFD results
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Thermal prediction of turbulent forced convection of nanofluid using computational fluid dynamics coupled genetic algorithm with fuzzy interface system
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
por: Meisam Babanezhad, et al.
Publicado: (2020) -
Pressure and temperature predictions of Al2O3/water nanofluid flow in a porous pipe for different nanoparticles volume fractions: combination of CFD and ACOFIS
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Prediction of gas velocity in two-phase flow using developed fuzzy logic system with differential evolution algorithm
por: Meisam Babanezhad, et al.
Publicado: (2021)