Trajectories of mortality risk among patients with cancer and associated end-of-life utilization
Abstract Machine learning algorithms may address prognostic inaccuracy among clinicians by identifying patients at risk of short-term mortality and facilitating earlier discussions about hospice enrollment, discontinuation of therapy, or other management decisions. In the present study, we used pros...
Enregistré dans:
Auteurs principaux: | Ravi B. Parikh, Manqing Liu, Eric Li, Runze Li, Jinbo Chen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/89188aa94de142019bff52b182f175b4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
par: Wei Gao, et autres
Publié: (2021) -
Predicting mortality risk for preterm infants using deep learning models with time-series vital sign data
par: Jiarui Feng, et autres
Publié: (2021) -
Evaluating risk stratification scoring systems to predict mortality in patients with COVID-19
par: Naveen Garg, et autres
Publié: (2021) -
Digital health: how to govern during a never-ending data tsunami
par: David S. Muntz
Publié: (2021) -
Presenting machine learning model information to clinical end users with model facts labels
par: Mark P. Sendak, et autres
Publié: (2020)