Trajectories of mortality risk among patients with cancer and associated end-of-life utilization
Abstract Machine learning algorithms may address prognostic inaccuracy among clinicians by identifying patients at risk of short-term mortality and facilitating earlier discussions about hospice enrollment, discontinuation of therapy, or other management decisions. In the present study, we used pros...
Guardado en:
Autores principales: | Ravi B. Parikh, Manqing Liu, Eric Li, Runze Li, Jinbo Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/89188aa94de142019bff52b182f175b4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
por: Wei Gao, et al.
Publicado: (2021) -
Predicting mortality risk for preterm infants using deep learning models with time-series vital sign data
por: Jiarui Feng, et al.
Publicado: (2021) -
Evaluating risk stratification scoring systems to predict mortality in patients with COVID-19
por: Naveen Garg, et al.
Publicado: (2021) -
Digital health: how to govern during a never-ending data tsunami
por: David S. Muntz
Publicado: (2021) -
Presenting machine learning model information to clinical end users with model facts labels
por: Mark P. Sendak, et al.
Publicado: (2020)