Bacterial dynamin-like proteins reveal mechanism for membrane fusion
Abstract The dynamin superfamily of large GTPases comprises specialized members that catalyze fusion and fission of biological membranes. While fission-specific proteins such as dynamin work as homo-oligomeric complexes, many fusion catalysts such as mitofusins or bacterial dynamin-like proteins (DL...
Enregistré dans:
Auteur principal: | |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/89198d96cb944f12b960167adf3d578c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Abstract The dynamin superfamily of large GTPases comprises specialized members that catalyze fusion and fission of biological membranes. While fission-specific proteins such as dynamin work as homo-oligomeric complexes, many fusion catalysts such as mitofusins or bacterial dynamin-like proteins (DLPs) act as hetero-oligomers. However, so far it was unclear how these hetero-oligomeric DLPs assemble and how they function in membrane remodeling. The group of Harry Low report now on the structure of a DLP pair from Campylobacter jejuni, allowing detailed insight into the assembly mechanism and membrane tethering activity. |
---|