Development of one dimensional geomechanical model for a tight gas reservoir
Abstract Estimating rock-mechanical, petrophysical properties and pre-production stress state is essential for effective reservoir planning, development, and optimal exploitation. This paper attempts to construct a comprehensive one-dimensional mechanical earth model (1D MEM) of the Mandapeta gas re...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/891f22e420b8454292b4b2ad25b9b35c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Estimating rock-mechanical, petrophysical properties and pre-production stress state is essential for effective reservoir planning, development, and optimal exploitation. This paper attempts to construct a comprehensive one-dimensional mechanical earth model (1D MEM) of the Mandapeta gas reservoir of Krishna Godavari (KG) basin, India. The methodology comprises a detailed stepwise process from processing and analysis of raw log data, calibration of log-derived dynamic properties with static ones using regression models developed from tested core samples, and final rock mechanical property estimation. Pore pressure profiles have been estimated and calibrated with the Repeat formation tester (RFT) data for every thirty-five wells. Overburden and horizontal stresses have also been evaluated and calibrated using data from the Leak-off Tests (LOT) or Extended Leak-off Tests (XLOT). A menu-driven program is developed using PYTHON code for visualization and on-time revision of 1D MEM. The resulting comprehensive 1D MEM predicts and establishes the rock-mechanical properties, pore pressure, and in-situ stress values of the basin. Besides its use in planning future wells, development of the field, and yielding insight into the various well challenges, it can also be used to develop a 3D MEM of the reservoir. |
---|