Trait-like nocturnal sleep behavior identified by combining wearable, phone-use, and self-report data
Abstract Using polysomnography over multiple weeks to characterize an individual’s habitual sleep behavior while accurate, is difficult to upscale. As an alternative, we integrated sleep measurements from a consumer sleep-tracker, smartphone-based ecological momentary assessment, and user-phone inte...
Guardado en:
Autores principales: | Stijn A. A. Massar, Xin Yu Chua, Chun Siong Soon, Alyssa S. C. Ng, Ju Lynn Ong, Nicholas I. Y. N. Chee, Tih Shih Lee, Arko Ghosh, Michael W. L. Chee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/891f6cd7ee184cd4817021da7c0ac051 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mobile devices and wearable technology for measuring patient outcomes after surgery: a systematic review
por: Stephen R. Knight, et al.
Publicado: (2021) -
Investigating sources of inaccuracy in wearable optical heart rate sensors
por: Brinnae Bent, et al.
Publicado: (2020) -
The emerging clinical role of wearables: factors for successful implementation in healthcare
por: Matthew Smuck, et al.
Publicado: (2021) -
Harnessing consumer smartphone and wearable sensors for clinical cancer research
por: Carissa A. Low
Publicado: (2020) -
Wearables as a tool for measuring therapeutic adherence in behavioral health
por: Leia Wedlund, et al.
Publicado: (2021)