Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2
Atmospheric carbon dioxide (CO2) has increased substantially since the industrial revolution began, and physiological responses to elevated atmospheric CO2 concentrations reportedly alter the biometry and wood structure of trees. Additionally, soil nutrient availability may play an important role in...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8946058c7973475db8aedc39c526fbfd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8946058c7973475db8aedc39c526fbfd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8946058c7973475db8aedc39c526fbfd2021-11-04T06:07:11ZIncreased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO21932-6203https://doaj.org/article/8946058c7973475db8aedc39c526fbfd2021-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535391/?tool=EBIhttps://doaj.org/toc/1932-6203Atmospheric carbon dioxide (CO2) has increased substantially since the industrial revolution began, and physiological responses to elevated atmospheric CO2 concentrations reportedly alter the biometry and wood structure of trees. Additionally, soil nutrient availability may play an important role in regulating these responses. Therefore, in this study, we grew 288 two-year-old saplings of sessile oak (Quercus petraea (Matt.) Liebl.) in lamellar glass domes for three years to evaluate the effects of CO2 concentrations and nutrient supply on above- and belowground biomass, wood density, and wood structure. Elevated CO2 increased above- and belowground biomass by 44.3% and 46.9%, respectively. However, under elevated CO2 treatment, sapling wood density was markedly lower (approximately 1.7%), and notably wider growth rings—and larger, more efficient conduits leading to increased hydraulic conductance—were observed. Moreover, despite the vessels being larger in saplings under elevated CO2, the vessels were significantly fewer (p = 0.023). No direct effects of nutrient supply were observed on biomass growth, wood density, or wood structure, except for a notable decrease in specific leaf area. These results suggest that, although fewer and larger conduits may render the xylem more vulnerable to embolism formation under drought conditions, the high growth rate in sessile oak saplings under elevated CO2 is supported by an efficient vascular system and may increase biomass production in this tree species. Nevertheless, the decreased mechanical strength, indicated by low density and xylem vulnerability to drought, may lead to earlier mortality, offsetting the positive effects of elevated CO2 levels in the future.Janko ArsićMarko StojanovićLucia PetrovičováEstelle NoyerSlobodan MilanovićJan SvětlíkPetr HoráčekJan KrejzaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Janko Arsić Marko Stojanović Lucia Petrovičová Estelle Noyer Slobodan Milanović Jan Světlík Petr Horáček Jan Krejza Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2 |
description |
Atmospheric carbon dioxide (CO2) has increased substantially since the industrial revolution began, and physiological responses to elevated atmospheric CO2 concentrations reportedly alter the biometry and wood structure of trees. Additionally, soil nutrient availability may play an important role in regulating these responses. Therefore, in this study, we grew 288 two-year-old saplings of sessile oak (Quercus petraea (Matt.) Liebl.) in lamellar glass domes for three years to evaluate the effects of CO2 concentrations and nutrient supply on above- and belowground biomass, wood density, and wood structure. Elevated CO2 increased above- and belowground biomass by 44.3% and 46.9%, respectively. However, under elevated CO2 treatment, sapling wood density was markedly lower (approximately 1.7%), and notably wider growth rings—and larger, more efficient conduits leading to increased hydraulic conductance—were observed. Moreover, despite the vessels being larger in saplings under elevated CO2, the vessels were significantly fewer (p = 0.023). No direct effects of nutrient supply were observed on biomass growth, wood density, or wood structure, except for a notable decrease in specific leaf area. These results suggest that, although fewer and larger conduits may render the xylem more vulnerable to embolism formation under drought conditions, the high growth rate in sessile oak saplings under elevated CO2 is supported by an efficient vascular system and may increase biomass production in this tree species. Nevertheless, the decreased mechanical strength, indicated by low density and xylem vulnerability to drought, may lead to earlier mortality, offsetting the positive effects of elevated CO2 levels in the future. |
format |
article |
author |
Janko Arsić Marko Stojanović Lucia Petrovičová Estelle Noyer Slobodan Milanović Jan Světlík Petr Horáček Jan Krejza |
author_facet |
Janko Arsić Marko Stojanović Lucia Petrovičová Estelle Noyer Slobodan Milanović Jan Světlík Petr Horáček Jan Krejza |
author_sort |
Janko Arsić |
title |
Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2 |
title_short |
Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2 |
title_full |
Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2 |
title_fullStr |
Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2 |
title_full_unstemmed |
Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2 |
title_sort |
increased wood biomass growth is associated with lower wood density in quercus petraea (matt.) liebl. saplings growing under elevated co2 |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/8946058c7973475db8aedc39c526fbfd |
work_keys_str_mv |
AT jankoarsic increasedwoodbiomassgrowthisassociatedwithlowerwooddensityinquercuspetraeamattlieblsaplingsgrowingunderelevatedco2 AT markostojanovic increasedwoodbiomassgrowthisassociatedwithlowerwooddensityinquercuspetraeamattlieblsaplingsgrowingunderelevatedco2 AT luciapetrovicova increasedwoodbiomassgrowthisassociatedwithlowerwooddensityinquercuspetraeamattlieblsaplingsgrowingunderelevatedco2 AT estellenoyer increasedwoodbiomassgrowthisassociatedwithlowerwooddensityinquercuspetraeamattlieblsaplingsgrowingunderelevatedco2 AT slobodanmilanovic increasedwoodbiomassgrowthisassociatedwithlowerwooddensityinquercuspetraeamattlieblsaplingsgrowingunderelevatedco2 AT jansvetlik increasedwoodbiomassgrowthisassociatedwithlowerwooddensityinquercuspetraeamattlieblsaplingsgrowingunderelevatedco2 AT petrhoracek increasedwoodbiomassgrowthisassociatedwithlowerwooddensityinquercuspetraeamattlieblsaplingsgrowingunderelevatedco2 AT jankrejza increasedwoodbiomassgrowthisassociatedwithlowerwooddensityinquercuspetraeamattlieblsaplingsgrowingunderelevatedco2 |
_version_ |
1718445160026603520 |