A new version of the results of UN-hypermetric spaces
Introduction/purpose: The aim of this paper is to present the concept of a universal hypermetric space. An n-dimensional (n ≥ 2) hypermetric distance over an arbitrary non-empty set X is generalized. This hypermetric distance measures how separated all n points of the space are. The paper discuss...
Enregistré dans:
| Auteurs principaux: | Akbar Dehghan Nezhad, Ahmadreza Forough, Nikola Mirkov, Stojan Radenović |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
University of Defence in Belgrade
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/8948c32961c8404d8cf8cf55191e819d |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences
par: Mudasir Younis, et autres
Publié: (2021) -
On some F - contraction of Piri–Kumam–Dung–type mappings in metric spaces
par: Jelena Z.Vujaković, et autres
Publié: (2020) -
A Fixed Point Theorem of Reich in G-Metric Spaces
par: Mustafa,Zead, et autres
Publié: (2010) -
Revisiting and revamping some novel results in F-metric spaces
par: Zoran D. Mitrović, et autres
Publié: (2021) -
Difference sequence spaces in cone metric space
par: Chandra Tripathy,Binod, et autres
Publié: (2014)