Novel robust time series analysis for long-term and short-term prediction
Abstract Nonlinear phenomena are universal in ecology. However, their inference and prediction are generally difficult because of autocorrelation and outliers. A traditional least squares method for parameter estimation is capable of improving short-term prediction by estimating autocorrelation, whe...
Guardado en:
Autores principales: | Hiroshi Okamura, Yutaka Osada, Shota Nishijima, Shinto Eguchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/894b93dc70be47c9b2221d800da7711f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Short term prediction of wind speed based on long-short term memory networks
por: Salman Umar T., et al.
Publicado: (2021) -
A decomposition‐based multi‐time dimension long short‐term memory model for short‐term electric load forecasting
por: Jiehui Huang, et al.
Publicado: (2021) -
Performance Analysis of Long Short-Term Memory-Based Markovian Spectrum Prediction
por: Niranjana Radhakrishnan, et al.
Publicado: (2021) -
Prediction of conotoxin type based on long short-term memory network
por: Feng Wang, et al.
Publicado: (2021) -
Short and Medium-Term Prediction of Winter Wheat NDVI Based on the DTW–LSTM Combination Method and MODIS Time Series Data
por: Fa Zhao, et al.
Publicado: (2021)