Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot

Some animals have multimodal locomotive capabilities to survive in different environments. Inspired by nature, Chen et al. build a centimeter-scaled robot that is capable of walking on water, underwater, on land, and transiting among all three, whose ‘feet’ break water by modifying surface tension....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yufeng Chen, Neel Doshi, Benjamin Goldberg, Hongqiang Wang, Robert J. Wood
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/8950f6f7d86e4b86839fb4d5fd08448d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8950f6f7d86e4b86839fb4d5fd08448d
record_format dspace
spelling oai:doaj.org-article:8950f6f7d86e4b86839fb4d5fd08448d2021-12-02T14:40:32ZControllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot10.1038/s41467-018-04855-92041-1723https://doaj.org/article/8950f6f7d86e4b86839fb4d5fd08448d2018-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04855-9https://doaj.org/toc/2041-1723Some animals have multimodal locomotive capabilities to survive in different environments. Inspired by nature, Chen et al. build a centimeter-scaled robot that is capable of walking on water, underwater, on land, and transiting among all three, whose ‘feet’ break water by modifying surface tension.Yufeng ChenNeel DoshiBenjamin GoldbergHongqiang WangRobert J. WoodNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-11 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yufeng Chen
Neel Doshi
Benjamin Goldberg
Hongqiang Wang
Robert J. Wood
Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot
description Some animals have multimodal locomotive capabilities to survive in different environments. Inspired by nature, Chen et al. build a centimeter-scaled robot that is capable of walking on water, underwater, on land, and transiting among all three, whose ‘feet’ break water by modifying surface tension.
format article
author Yufeng Chen
Neel Doshi
Benjamin Goldberg
Hongqiang Wang
Robert J. Wood
author_facet Yufeng Chen
Neel Doshi
Benjamin Goldberg
Hongqiang Wang
Robert J. Wood
author_sort Yufeng Chen
title Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot
title_short Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot
title_full Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot
title_fullStr Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot
title_full_unstemmed Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot
title_sort controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/8950f6f7d86e4b86839fb4d5fd08448d
work_keys_str_mv AT yufengchen controllablewatersurfacetounderwatertransitionthroughelectrowettinginahybridterrestrialaquaticmicrorobot
AT neeldoshi controllablewatersurfacetounderwatertransitionthroughelectrowettinginahybridterrestrialaquaticmicrorobot
AT benjamingoldberg controllablewatersurfacetounderwatertransitionthroughelectrowettinginahybridterrestrialaquaticmicrorobot
AT hongqiangwang controllablewatersurfacetounderwatertransitionthroughelectrowettinginahybridterrestrialaquaticmicrorobot
AT robertjwood controllablewatersurfacetounderwatertransitionthroughelectrowettinginahybridterrestrialaquaticmicrorobot
_version_ 1718390250812735488