Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot
Some animals have multimodal locomotive capabilities to survive in different environments. Inspired by nature, Chen et al. build a centimeter-scaled robot that is capable of walking on water, underwater, on land, and transiting among all three, whose ‘feet’ break water by modifying surface tension....
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8950f6f7d86e4b86839fb4d5fd08448d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8950f6f7d86e4b86839fb4d5fd08448d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8950f6f7d86e4b86839fb4d5fd08448d2021-12-02T14:40:32ZControllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot10.1038/s41467-018-04855-92041-1723https://doaj.org/article/8950f6f7d86e4b86839fb4d5fd08448d2018-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04855-9https://doaj.org/toc/2041-1723Some animals have multimodal locomotive capabilities to survive in different environments. Inspired by nature, Chen et al. build a centimeter-scaled robot that is capable of walking on water, underwater, on land, and transiting among all three, whose ‘feet’ break water by modifying surface tension.Yufeng ChenNeel DoshiBenjamin GoldbergHongqiang WangRobert J. WoodNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-11 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Yufeng Chen Neel Doshi Benjamin Goldberg Hongqiang Wang Robert J. Wood Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot |
description |
Some animals have multimodal locomotive capabilities to survive in different environments. Inspired by nature, Chen et al. build a centimeter-scaled robot that is capable of walking on water, underwater, on land, and transiting among all three, whose ‘feet’ break water by modifying surface tension. |
format |
article |
author |
Yufeng Chen Neel Doshi Benjamin Goldberg Hongqiang Wang Robert J. Wood |
author_facet |
Yufeng Chen Neel Doshi Benjamin Goldberg Hongqiang Wang Robert J. Wood |
author_sort |
Yufeng Chen |
title |
Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot |
title_short |
Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot |
title_full |
Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot |
title_fullStr |
Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot |
title_full_unstemmed |
Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot |
title_sort |
controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/8950f6f7d86e4b86839fb4d5fd08448d |
work_keys_str_mv |
AT yufengchen controllablewatersurfacetounderwatertransitionthroughelectrowettinginahybridterrestrialaquaticmicrorobot AT neeldoshi controllablewatersurfacetounderwatertransitionthroughelectrowettinginahybridterrestrialaquaticmicrorobot AT benjamingoldberg controllablewatersurfacetounderwatertransitionthroughelectrowettinginahybridterrestrialaquaticmicrorobot AT hongqiangwang controllablewatersurfacetounderwatertransitionthroughelectrowettinginahybridterrestrialaquaticmicrorobot AT robertjwood controllablewatersurfacetounderwatertransitionthroughelectrowettinginahybridterrestrialaquaticmicrorobot |
_version_ |
1718390250812735488 |