Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”

Guardado en:
Detalles Bibliográficos
Autores principales: Mirjam Pot, Barbara Prainsack
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/89585920410f4c64b280fbdcbce28128
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:89585920410f4c64b280fbdcbce28128
record_format dspace
spelling oai:doaj.org-article:89585920410f4c64b280fbdcbce281282021-11-07T12:14:43ZReply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”10.1186/s13244-021-01088-11869-4101https://doaj.org/article/89585920410f4c64b280fbdcbce281282021-11-01T00:00:00Zhttps://doi.org/10.1186/s13244-021-01088-1https://doaj.org/toc/1869-4101Mirjam PotBarbara PrainsackSpringerOpenarticleArtificial intelligenceBiasInequityMedical physics. Medical radiology. Nuclear medicineR895-920ENInsights into Imaging, Vol 12, Iss 1, Pp 1-2 (2021)
institution DOAJ
collection DOAJ
language EN
topic Artificial intelligence
Bias
Inequity
Medical physics. Medical radiology. Nuclear medicine
R895-920
spellingShingle Artificial intelligence
Bias
Inequity
Medical physics. Medical radiology. Nuclear medicine
R895-920
Mirjam Pot
Barbara Prainsack
Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
format article
author Mirjam Pot
Barbara Prainsack
author_facet Mirjam Pot
Barbara Prainsack
author_sort Mirjam Pot
title Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
title_short Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
title_full Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
title_fullStr Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
title_full_unstemmed Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
title_sort reply to letter to the editor on “not all biases are bad: equitable and inequitable biases in machine learning and radiology”
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/89585920410f4c64b280fbdcbce28128
work_keys_str_mv AT mirjampot replytolettertotheeditoronnotallbiasesarebadequitableandinequitablebiasesinmachinelearningandradiology
AT barbaraprainsack replytolettertotheeditoronnotallbiasesarebadequitableandinequitablebiasesinmachinelearningandradiology
_version_ 1718443500244041728