Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
Guardado en:
Autores principales: | Mirjam Pot, Barbara Prainsack |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/89585920410f4c64b280fbdcbce28128 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Measuring the bias of incorrect application of feature selection when using cross-validation in radiomics
por: Aydin Demircioğlu
Publicado: (2021) -
Radiology and Oncology
Publicado: (2008) -
How Safe Are Radiation Doses in Diagnostic Radiology? A Historical Perspective and Review of Current Evidence
por: Srikanth Moorthy
Publicado: (2021) -
Indian Journal of Radiology and Imaging
Publicado: (2004) -
Impact of COVID-19 on radiology education in Europe: a survey by the ESR Radiology Trainees Forum (RTF)
por: European Society of Radiology (ESR)
Publicado: (2021)