Estimation of PM<sub>2.5</sub> Concentration Using Deep Bayesian Model Considering Spatial Multiscale
Directly establishing the relationship between satellite data and PM<sub>2.5</sub> concentration through deep learning methods for PM<sub>2.5</sub> concentration estimation is an important means for estimating regional PM<sub>2.5</sub> concentration. However, due...
Guardado en:
Autores principales: | Xingdi Chen, Peng Kong, Peng Jiang, Yanlan Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/897952685233496aaaf89e6fa4e8cde3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Estimation of the PM<sub>2.5</sub> and PM<sub>10</sub> Mass Concentration over Land from FY-4A Aerosol Optical Depth Data
por: Yuxin Sun, et al.
Publicado: (2021) -
The Process and Platform for Predicting PM<sub>2.5</sub> Inhalation and Retention during Exercise
por: Hui-Chin Wu, et al.
Publicado: (2021) -
Spatial-Temporal Variation of Air PM<sub>2.5</sub> and PM<sub>10</sub> within Different Types of Vegetation during Winter in an Urban Riparian Zone of Shanghai
por: Jing Wang, et al.
Publicado: (2021) -
Variations in Nocturnal Residual Layer Height and Its Effects on Surface PM<sub>2.5</sub> over Wuhan, China
por: Xin Ma, et al.
Publicado: (2021) -
Spatial Variation of the Effect of Multidimensional Urbanization on PM<sub>2.5</sub> Concentration in the Beijing–Tianjin–Hebei (BTH) Urban Agglomeration
por: Qianyuan Huang, et al.
Publicado: (2021)