Impact of operation condition on temperature distribution in single cell of polymer electrolyte fuel cell operated at higher temperature than usual

For improving performance of the stationary Polymer Electrolyte Fuel Cell (PEFC) system, the cell operating temperature up to 90°C will be preferred in Japan during the period from 2020 to 2030. To understand the operation of the PEFC system under relatively high temperature conditions, detail heat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Akira NISHIMURA, Masato YOSHIMURA, Amira Hakimi MAHADI, Masafumi HIROTA, Mohan Lal KOLHE
Formato: article
Lenguaje:EN
Publicado: The Japan Society of Mechanical Engineers 2016
Materias:
Acceso en línea:https://doaj.org/article/899579994ab54e8f9eeb5d2c390431ac
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:899579994ab54e8f9eeb5d2c390431ac
record_format dspace
spelling oai:doaj.org-article:899579994ab54e8f9eeb5d2c390431ac2021-11-26T06:55:30ZImpact of operation condition on temperature distribution in single cell of polymer electrolyte fuel cell operated at higher temperature than usual2187-974510.1299/mej.16-00304https://doaj.org/article/899579994ab54e8f9eeb5d2c390431ac2016-10-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/mej/3/5/3_16-00304/_pdf/-char/enhttps://doaj.org/toc/2187-9745For improving performance of the stationary Polymer Electrolyte Fuel Cell (PEFC) system, the cell operating temperature up to 90°C will be preferred in Japan during the period from 2020 to 2030. To understand the operation of the PEFC system under relatively high temperature conditions, detail heat and mass transfer analysis is required. The main focus of this study is to analyze the PEFC performance under operational conditions, such as initial operational temperature of cell (Tini), relative humidity of supply gas, and the cathode gas type, temperature distribution in a cell of PEFC (using Nafion membrane) under relatively higher operating temperature conditions. The in-plane temperature distributions on backside of gas separator of cell under power generation were measured using thermograph and it was observed that the in-plane temperature distribution at the anode was more uniform than that at the cathode under the O2 supply condition, irrespective of Tini, relative humidity of supply gases except Tini of 100°C. As to Tini of 100°C, the in-plane temperature distribution at the anode was broader since the back diffusion of water from the cathode to the anode was helped compared to the other Tini. The temperature at the cathode was raised through the gas channel toward the outlet of cell for the relative humidity of supply gases of 100 %RH at Tini of 90°C, while the temperature increase was relatively smaller at Tini of 80°C. The in-plane temperature distribution at the anode under the air supply condition was broader compared to not only that at the cathode, but also that at the anode under the O2 supply condition. It is necessary to manage the water concentration (liquid water accumulation in gas channel and gas diffusion layer (GDL) as well as relative humidity in PEM and catalyst layer) and required O2 supply in order to obtain a good power generation performance of PEFC under relatively higher temperature operating conditions than usual.Akira NISHIMURAMasato YOSHIMURAAmira Hakimi MAHADIMasafumi HIROTAMohan Lal KOLHEThe Japan Society of Mechanical Engineersarticlepolymer electrolyte fuel cell (pefc)higher temperature operation than usualtemperature distributionthermographimpact of operation conditionpower generation performanceMechanical engineering and machineryTJ1-1570ENMechanical Engineering Journal, Vol 3, Iss 5, Pp 16-00304-16-00304 (2016)
institution DOAJ
collection DOAJ
language EN
topic polymer electrolyte fuel cell (pefc)
higher temperature operation than usual
temperature distribution
thermograph
impact of operation condition
power generation performance
Mechanical engineering and machinery
TJ1-1570
spellingShingle polymer electrolyte fuel cell (pefc)
higher temperature operation than usual
temperature distribution
thermograph
impact of operation condition
power generation performance
Mechanical engineering and machinery
TJ1-1570
Akira NISHIMURA
Masato YOSHIMURA
Amira Hakimi MAHADI
Masafumi HIROTA
Mohan Lal KOLHE
Impact of operation condition on temperature distribution in single cell of polymer electrolyte fuel cell operated at higher temperature than usual
description For improving performance of the stationary Polymer Electrolyte Fuel Cell (PEFC) system, the cell operating temperature up to 90°C will be preferred in Japan during the period from 2020 to 2030. To understand the operation of the PEFC system under relatively high temperature conditions, detail heat and mass transfer analysis is required. The main focus of this study is to analyze the PEFC performance under operational conditions, such as initial operational temperature of cell (Tini), relative humidity of supply gas, and the cathode gas type, temperature distribution in a cell of PEFC (using Nafion membrane) under relatively higher operating temperature conditions. The in-plane temperature distributions on backside of gas separator of cell under power generation were measured using thermograph and it was observed that the in-plane temperature distribution at the anode was more uniform than that at the cathode under the O2 supply condition, irrespective of Tini, relative humidity of supply gases except Tini of 100°C. As to Tini of 100°C, the in-plane temperature distribution at the anode was broader since the back diffusion of water from the cathode to the anode was helped compared to the other Tini. The temperature at the cathode was raised through the gas channel toward the outlet of cell for the relative humidity of supply gases of 100 %RH at Tini of 90°C, while the temperature increase was relatively smaller at Tini of 80°C. The in-plane temperature distribution at the anode under the air supply condition was broader compared to not only that at the cathode, but also that at the anode under the O2 supply condition. It is necessary to manage the water concentration (liquid water accumulation in gas channel and gas diffusion layer (GDL) as well as relative humidity in PEM and catalyst layer) and required O2 supply in order to obtain a good power generation performance of PEFC under relatively higher temperature operating conditions than usual.
format article
author Akira NISHIMURA
Masato YOSHIMURA
Amira Hakimi MAHADI
Masafumi HIROTA
Mohan Lal KOLHE
author_facet Akira NISHIMURA
Masato YOSHIMURA
Amira Hakimi MAHADI
Masafumi HIROTA
Mohan Lal KOLHE
author_sort Akira NISHIMURA
title Impact of operation condition on temperature distribution in single cell of polymer electrolyte fuel cell operated at higher temperature than usual
title_short Impact of operation condition on temperature distribution in single cell of polymer electrolyte fuel cell operated at higher temperature than usual
title_full Impact of operation condition on temperature distribution in single cell of polymer electrolyte fuel cell operated at higher temperature than usual
title_fullStr Impact of operation condition on temperature distribution in single cell of polymer electrolyte fuel cell operated at higher temperature than usual
title_full_unstemmed Impact of operation condition on temperature distribution in single cell of polymer electrolyte fuel cell operated at higher temperature than usual
title_sort impact of operation condition on temperature distribution in single cell of polymer electrolyte fuel cell operated at higher temperature than usual
publisher The Japan Society of Mechanical Engineers
publishDate 2016
url https://doaj.org/article/899579994ab54e8f9eeb5d2c390431ac
work_keys_str_mv AT akiranishimura impactofoperationconditionontemperaturedistributioninsinglecellofpolymerelectrolytefuelcelloperatedathighertemperaturethanusual
AT masatoyoshimura impactofoperationconditionontemperaturedistributioninsinglecellofpolymerelectrolytefuelcelloperatedathighertemperaturethanusual
AT amirahakimimahadi impactofoperationconditionontemperaturedistributioninsinglecellofpolymerelectrolytefuelcelloperatedathighertemperaturethanusual
AT masafumihirota impactofoperationconditionontemperaturedistributioninsinglecellofpolymerelectrolytefuelcelloperatedathighertemperaturethanusual
AT mohanlalkolhe impactofoperationconditionontemperaturedistributioninsinglecellofpolymerelectrolytefuelcelloperatedathighertemperaturethanusual
_version_ 1718409731299606528