Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast)
Abstract Groundwater quality appraisal is one of the most crucial tasks to ensure safe drinking water sources. Concurrently, a water quality index (WQI) requires some water quality parameters. Conventionally, WQI computation consumes time and is often found with various errors during subindex calcul...
Guardado en:
Autores principales: | Saber Kouadri, Ahmed Elbeltagi, Abu Reza Md. Towfiqul Islam, Samir Kateb |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/899f15adc69d42de8663ca7c9dfb3cb3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real-time neuro-fuzzy controller for pressure adjustment in water distribution systems
por: Hugo Augusto Marinho Moreira, et al.
Publicado: (2021) -
Quantifying the impact of the COVID-19 lockdown on household water consumption patterns in England
por: Halidu Abu-Bakar, et al.
Publicado: (2021) -
Artificial neural network modeling approach for the prediction of five-day biological oxygen demand and wastewater treatment plant performance
por: Abdalrahman Alsulaili, et al.
Publicado: (2021) -
Application of SVM, ANN, GRNN, RF, GP and RT models for predicting discharge coefficients of oblique sluice gates using experimental data
por: Farzin Salmasi, et al.
Publicado: (2021) -
Towards a model for road runoff infiltration management
por: Loïc Maurer, et al.
Publicado: (2021)