MarsExplorer: Exploration of Unknown Terrains via Deep Reinforcement Learning and Procedurally Generated Environments
This paper is an initial endeavor to bridge the gap between powerful Deep Reinforcement Learning methodologies and the problem of exploration/coverage of unknown terrains. Within this scope, MarsExplorer, an openai-gym compatible environment tailored to exploration/coverage of unknown areas, is pres...
Guardado en:
Autores principales: | Dimitrios I. Koutras, Athanasios C. Kapoutsis, Angelos A. Amanatiadis, Elias B. Kosmatopoulos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/89b0f32561004c3ea99cdb0421579ba6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluating Terrain as a Turbulence Generation Method
por: Patrick Hawbecker, et al.
Publicado: (2021) -
Hierarchical Cognitive Control for Unknown Dynamic Systems Tracking
por: Mircea-Bogdan Radac, et al.
Publicado: (2021) -
Organizational Factors for Exploration and Exploitation
por: Pandey,Sharadindu, et al.
Publicado: (2009) -
Optimal selection and adaptability analysis of matching area for terrain aided navigation
por: Rui Chen, et al.
Publicado: (2021) -
Predicting wine quality from terrain characteristics with regression trees
por: Reiner Schwarz
Publicado: (1997)