Spatial regression and geostatistics discourse with empirical application to precipitation data in Nigeria

Abstract In this study, we propose a robust approach to handling geo-referenced data and discuss its statistical analysis. The linear regression model has been found inappropriate in this type of study. This motivates us to redefine its error structure to incorporate the spatial components inherent...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Oluyemi A. Okunlola, Mohannad Alobid, Olusanya E. Olubusoye, Kayode Ayinde, Adewale F. Lukman, István Szűcs
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/89c3a63ca7a04b74a86c9cd1c33f18e1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:89c3a63ca7a04b74a86c9cd1c33f18e1
record_format dspace
spelling oai:doaj.org-article:89c3a63ca7a04b74a86c9cd1c33f18e12021-12-02T16:46:35ZSpatial regression and geostatistics discourse with empirical application to precipitation data in Nigeria10.1038/s41598-021-96124-x2045-2322https://doaj.org/article/89c3a63ca7a04b74a86c9cd1c33f18e12021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-96124-xhttps://doaj.org/toc/2045-2322Abstract In this study, we propose a robust approach to handling geo-referenced data and discuss its statistical analysis. The linear regression model has been found inappropriate in this type of study. This motivates us to redefine its error structure to incorporate the spatial components inherent in the data into the model. Therefore, four spatial models emanated from the re-definition of the error structure. We fitted the spatial and the non-spatial linear model to the precipitation data and compared their results. All the spatial models outperformed the non-spatial model. The Spatial Autoregressive with additional autoregressive error structure (SARAR) model is the most adequate among the spatial models. Furthermore, we identified the hot and cold spot locations of precipitation and their spatial distribution in the study area.Oluyemi A. OkunlolaMohannad AlobidOlusanya E. OlubusoyeKayode AyindeAdewale F. LukmanIstván SzűcsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Oluyemi A. Okunlola
Mohannad Alobid
Olusanya E. Olubusoye
Kayode Ayinde
Adewale F. Lukman
István Szűcs
Spatial regression and geostatistics discourse with empirical application to precipitation data in Nigeria
description Abstract In this study, we propose a robust approach to handling geo-referenced data and discuss its statistical analysis. The linear regression model has been found inappropriate in this type of study. This motivates us to redefine its error structure to incorporate the spatial components inherent in the data into the model. Therefore, four spatial models emanated from the re-definition of the error structure. We fitted the spatial and the non-spatial linear model to the precipitation data and compared their results. All the spatial models outperformed the non-spatial model. The Spatial Autoregressive with additional autoregressive error structure (SARAR) model is the most adequate among the spatial models. Furthermore, we identified the hot and cold spot locations of precipitation and their spatial distribution in the study area.
format article
author Oluyemi A. Okunlola
Mohannad Alobid
Olusanya E. Olubusoye
Kayode Ayinde
Adewale F. Lukman
István Szűcs
author_facet Oluyemi A. Okunlola
Mohannad Alobid
Olusanya E. Olubusoye
Kayode Ayinde
Adewale F. Lukman
István Szűcs
author_sort Oluyemi A. Okunlola
title Spatial regression and geostatistics discourse with empirical application to precipitation data in Nigeria
title_short Spatial regression and geostatistics discourse with empirical application to precipitation data in Nigeria
title_full Spatial regression and geostatistics discourse with empirical application to precipitation data in Nigeria
title_fullStr Spatial regression and geostatistics discourse with empirical application to precipitation data in Nigeria
title_full_unstemmed Spatial regression and geostatistics discourse with empirical application to precipitation data in Nigeria
title_sort spatial regression and geostatistics discourse with empirical application to precipitation data in nigeria
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/89c3a63ca7a04b74a86c9cd1c33f18e1
work_keys_str_mv AT oluyemiaokunlola spatialregressionandgeostatisticsdiscoursewithempiricalapplicationtoprecipitationdatainnigeria
AT mohannadalobid spatialregressionandgeostatisticsdiscoursewithempiricalapplicationtoprecipitationdatainnigeria
AT olusanyaeolubusoye spatialregressionandgeostatisticsdiscoursewithempiricalapplicationtoprecipitationdatainnigeria
AT kayodeayinde spatialregressionandgeostatisticsdiscoursewithempiricalapplicationtoprecipitationdatainnigeria
AT adewaleflukman spatialregressionandgeostatisticsdiscoursewithempiricalapplicationtoprecipitationdatainnigeria
AT istvanszucs spatialregressionandgeostatisticsdiscoursewithempiricalapplicationtoprecipitationdatainnigeria
_version_ 1718383407459729408