Connectivity-informed drainage network generation using deep convolution generative adversarial networks
Abstract Stochastic network modeling is often limited by high computational costs to generate a large number of networks enough for meaningful statistical evaluation. In this study, Deep Convolutional Generative Adversarial Networks (DCGANs) were applied to quickly reproduce drainage networks from t...
Guardado en:
Autores principales: | Sung Eun Kim, Yongwon Seo, Junshik Hwang, Hongkyu Yoon, Jonghyun Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/89c7ad6495e243988933f3e8c66b30bf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures
por: Teng Long, et al.
Publicado: (2021) -
Conditional Deep 3D-Convolutional Generative Adversarial Nets for RGB-D Generation
por: Richa Sharma, et al.
Publicado: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Quantum generative adversarial networks with multiple superconducting qubits
por: Kaixuan Huang, et al.
Publicado: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
por: Yanlong Gao, et al.
Publicado: (2021)