Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging

Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) can determine the spatial distribution of analytes such as protein distributions in a tissue section according to their mass-to-charge ratio. Here, we explored the clinical potential of machine learning (ML) applied to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Paul Mittal, Mark R. Condina, Manuela Klingler-Hoffmann, Gurjeet Kaur, Martin K. Oehler, Oliver M. Sieber, Michelle Palmieri, Stefan Kommoss, Sara Brucker, Mark D. McDonnell, Peter Hoffmann
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/89c98a6a933741a8a47c161c0e4ac318
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:89c98a6a933741a8a47c161c0e4ac318
record_format dspace
spelling oai:doaj.org-article:89c98a6a933741a8a47c161c0e4ac3182021-11-11T15:29:45ZCancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging10.3390/cancers132153882072-6694https://doaj.org/article/89c98a6a933741a8a47c161c0e4ac3182021-10-01T00:00:00Zhttps://www.mdpi.com/2072-6694/13/21/5388https://doaj.org/toc/2072-6694Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) can determine the spatial distribution of analytes such as protein distributions in a tissue section according to their mass-to-charge ratio. Here, we explored the clinical potential of machine learning (ML) applied to MALDI MSI data for cancer diagnostic classification using tissue microarrays (TMAs) on 302 colorectal (CRC) and 257 endometrial cancer (EC)) patients. ML based on deep neural networks discriminated colorectal tumour from normal tissue with an overall accuracy of 98% in balanced cross-validation (98.2% sensitivity and 98.6% specificity). Moreover, our machine learning approach predicted the presence of lymph node metastasis (LNM) for primary tumours of EC with an accuracy of 80% (90% sensitivity and 69% specificity). Our results demonstrate the capability of MALDI MSI for complementing classic histopathological examination for cancer diagnostic applications.Paul MittalMark R. CondinaManuela Klingler-HoffmannGurjeet KaurMartin K. OehlerOliver M. SieberMichelle PalmieriStefan KommossSara BruckerMark D. McDonnellPeter HoffmannMDPI AGarticlecolorectal cancer (CRC)endometrial cancer (EC)lymph node metastasis (LNM)machine learning (ML)matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI)Neoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENCancers, Vol 13, Iss 5388, p 5388 (2021)
institution DOAJ
collection DOAJ
language EN
topic colorectal cancer (CRC)
endometrial cancer (EC)
lymph node metastasis (LNM)
machine learning (ML)
matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI)
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
spellingShingle colorectal cancer (CRC)
endometrial cancer (EC)
lymph node metastasis (LNM)
machine learning (ML)
matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI)
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
Paul Mittal
Mark R. Condina
Manuela Klingler-Hoffmann
Gurjeet Kaur
Martin K. Oehler
Oliver M. Sieber
Michelle Palmieri
Stefan Kommoss
Sara Brucker
Mark D. McDonnell
Peter Hoffmann
Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging
description Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) can determine the spatial distribution of analytes such as protein distributions in a tissue section according to their mass-to-charge ratio. Here, we explored the clinical potential of machine learning (ML) applied to MALDI MSI data for cancer diagnostic classification using tissue microarrays (TMAs) on 302 colorectal (CRC) and 257 endometrial cancer (EC)) patients. ML based on deep neural networks discriminated colorectal tumour from normal tissue with an overall accuracy of 98% in balanced cross-validation (98.2% sensitivity and 98.6% specificity). Moreover, our machine learning approach predicted the presence of lymph node metastasis (LNM) for primary tumours of EC with an accuracy of 80% (90% sensitivity and 69% specificity). Our results demonstrate the capability of MALDI MSI for complementing classic histopathological examination for cancer diagnostic applications.
format article
author Paul Mittal
Mark R. Condina
Manuela Klingler-Hoffmann
Gurjeet Kaur
Martin K. Oehler
Oliver M. Sieber
Michelle Palmieri
Stefan Kommoss
Sara Brucker
Mark D. McDonnell
Peter Hoffmann
author_facet Paul Mittal
Mark R. Condina
Manuela Klingler-Hoffmann
Gurjeet Kaur
Martin K. Oehler
Oliver M. Sieber
Michelle Palmieri
Stefan Kommoss
Sara Brucker
Mark D. McDonnell
Peter Hoffmann
author_sort Paul Mittal
title Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging
title_short Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging
title_full Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging
title_fullStr Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging
title_full_unstemmed Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging
title_sort cancer tissue classification using supervised machine learning applied to maldi mass spectrometry imaging
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/89c98a6a933741a8a47c161c0e4ac318
work_keys_str_mv AT paulmittal cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging
AT markrcondina cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging
AT manuelaklinglerhoffmann cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging
AT gurjeetkaur cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging
AT martinkoehler cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging
AT olivermsieber cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging
AT michellepalmieri cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging
AT stefankommoss cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging
AT sarabrucker cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging
AT markdmcdonnell cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging
AT peterhoffmann cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging
_version_ 1718435251325239296