Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging
Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) can determine the spatial distribution of analytes such as protein distributions in a tissue section according to their mass-to-charge ratio. Here, we explored the clinical potential of machine learning (ML) applied to...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/89c98a6a933741a8a47c161c0e4ac318 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:89c98a6a933741a8a47c161c0e4ac318 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:89c98a6a933741a8a47c161c0e4ac3182021-11-11T15:29:45ZCancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging10.3390/cancers132153882072-6694https://doaj.org/article/89c98a6a933741a8a47c161c0e4ac3182021-10-01T00:00:00Zhttps://www.mdpi.com/2072-6694/13/21/5388https://doaj.org/toc/2072-6694Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) can determine the spatial distribution of analytes such as protein distributions in a tissue section according to their mass-to-charge ratio. Here, we explored the clinical potential of machine learning (ML) applied to MALDI MSI data for cancer diagnostic classification using tissue microarrays (TMAs) on 302 colorectal (CRC) and 257 endometrial cancer (EC)) patients. ML based on deep neural networks discriminated colorectal tumour from normal tissue with an overall accuracy of 98% in balanced cross-validation (98.2% sensitivity and 98.6% specificity). Moreover, our machine learning approach predicted the presence of lymph node metastasis (LNM) for primary tumours of EC with an accuracy of 80% (90% sensitivity and 69% specificity). Our results demonstrate the capability of MALDI MSI for complementing classic histopathological examination for cancer diagnostic applications.Paul MittalMark R. CondinaManuela Klingler-HoffmannGurjeet KaurMartin K. OehlerOliver M. SieberMichelle PalmieriStefan KommossSara BruckerMark D. McDonnellPeter HoffmannMDPI AGarticlecolorectal cancer (CRC)endometrial cancer (EC)lymph node metastasis (LNM)machine learning (ML)matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI)Neoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENCancers, Vol 13, Iss 5388, p 5388 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
colorectal cancer (CRC) endometrial cancer (EC) lymph node metastasis (LNM) machine learning (ML) matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) Neoplasms. Tumors. Oncology. Including cancer and carcinogens RC254-282 |
spellingShingle |
colorectal cancer (CRC) endometrial cancer (EC) lymph node metastasis (LNM) machine learning (ML) matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) Neoplasms. Tumors. Oncology. Including cancer and carcinogens RC254-282 Paul Mittal Mark R. Condina Manuela Klingler-Hoffmann Gurjeet Kaur Martin K. Oehler Oliver M. Sieber Michelle Palmieri Stefan Kommoss Sara Brucker Mark D. McDonnell Peter Hoffmann Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging |
description |
Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) can determine the spatial distribution of analytes such as protein distributions in a tissue section according to their mass-to-charge ratio. Here, we explored the clinical potential of machine learning (ML) applied to MALDI MSI data for cancer diagnostic classification using tissue microarrays (TMAs) on 302 colorectal (CRC) and 257 endometrial cancer (EC)) patients. ML based on deep neural networks discriminated colorectal tumour from normal tissue with an overall accuracy of 98% in balanced cross-validation (98.2% sensitivity and 98.6% specificity). Moreover, our machine learning approach predicted the presence of lymph node metastasis (LNM) for primary tumours of EC with an accuracy of 80% (90% sensitivity and 69% specificity). Our results demonstrate the capability of MALDI MSI for complementing classic histopathological examination for cancer diagnostic applications. |
format |
article |
author |
Paul Mittal Mark R. Condina Manuela Klingler-Hoffmann Gurjeet Kaur Martin K. Oehler Oliver M. Sieber Michelle Palmieri Stefan Kommoss Sara Brucker Mark D. McDonnell Peter Hoffmann |
author_facet |
Paul Mittal Mark R. Condina Manuela Klingler-Hoffmann Gurjeet Kaur Martin K. Oehler Oliver M. Sieber Michelle Palmieri Stefan Kommoss Sara Brucker Mark D. McDonnell Peter Hoffmann |
author_sort |
Paul Mittal |
title |
Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging |
title_short |
Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging |
title_full |
Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging |
title_fullStr |
Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging |
title_full_unstemmed |
Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging |
title_sort |
cancer tissue classification using supervised machine learning applied to maldi mass spectrometry imaging |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/89c98a6a933741a8a47c161c0e4ac318 |
work_keys_str_mv |
AT paulmittal cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging AT markrcondina cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging AT manuelaklinglerhoffmann cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging AT gurjeetkaur cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging AT martinkoehler cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging AT olivermsieber cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging AT michellepalmieri cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging AT stefankommoss cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging AT sarabrucker cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging AT markdmcdonnell cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging AT peterhoffmann cancertissueclassificationusingsupervisedmachinelearningappliedtomaldimassspectrometryimaging |
_version_ |
1718435251325239296 |