Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites

Xiuying Li,1,* Zhenhong Wei,1,* Huiying Lv,1 Liya Wu,1 Yingnan Cui,1 Hua Yao,1 Jing Li,1 Hao Zhang,2 Bai Yang,2 Jinlan Jiang1 1Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China; 2State Key Laboratory of Supramolecular...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Li X, Wei Z, Lv H, Wu L, Cui Y, Yao H, Li J, Zhang H, Yang B, Jiang J
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://doaj.org/article/89cce189d81e4059a26b02dac790686d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:89cce189d81e4059a26b02dac790686d
record_format dspace
spelling oai:doaj.org-article:89cce189d81e4059a26b02dac790686d2021-12-02T04:04:10ZIron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites1178-2013https://doaj.org/article/89cce189d81e4059a26b02dac790686d2019-01-01T00:00:00Zhttps://www.dovepress.com/iron-oxide-nanoparticles-promote-the-migration-of-mesenchymal-stem-cel-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Xiuying Li,1,* Zhenhong Wei,1,* Huiying Lv,1 Liya Wu,1 Yingnan Cui,1 Hua Yao,1 Jing Li,1 Hao Zhang,2 Bai Yang,2 Jinlan Jiang1 1Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China; 2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, People’s Republic of China *These authors contributed equally to this work Background: Developing new methods to deliver cells to the injured tissue is a critical factor in translating cell therapeutics research into clinical use; therefore, there is a need for improved cell homing capabilities. Materials and methods: In this study, we demonstrated the effects of labeling rat bone marrow-derived mesenchymal stem cells (MSCs) with fabricated polydopamine (PDA)-capped Fe3O4 (Fe3O4@PDA) superparticles employing preassembled Fe3O4 nanoparticles as the cores. Results: We found that the Fe3O4@PDA composite superparticles exhibited no adverse effects on MSC characteristics. Moreover, iron oxide nanoparticles increased the number of MSCs in the S-phase, their proliferation index and migration ability, and their secretion of vascular endothelial growth factor relative to unlabeled MSCs. Interestingly, nanoparticles not only promoted the expression of C-X-C chemokine receptor 4 but also increased the expression of the migration-related proteins c-Met and C-C motif chemokine receptor 1, which has not been reported previously. Furthermore, the MSC-loaded nanoparticles exhibited improved homing and anti-inflammatory abilities in the absence of external magnetic fields in vivo. Conclusion: These results indicated that iron oxide nanoparticles rendered MSCs more favorable for use in injury treatment with no negative effects on MSC properties, suggesting their potential clinical efficacy. Keywords: mesenchymal stem cells, migration, Fe3O4 nanoparticles, polydopamineLi XWei ZLv HWu LCui YYao HLi JZhang HYang BJiang JDove Medical Pressarticlemesenchymal stem cellsmigrationFe3O4 nanoparticlespolydopamineMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 573-589 (2019)
institution DOAJ
collection DOAJ
language EN
topic mesenchymal stem cells
migration
Fe3O4 nanoparticles
polydopamine
Medicine (General)
R5-920
spellingShingle mesenchymal stem cells
migration
Fe3O4 nanoparticles
polydopamine
Medicine (General)
R5-920
Li X
Wei Z
Lv H
Wu L
Cui Y
Yao H
Li J
Zhang H
Yang B
Jiang J
Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites
description Xiuying Li,1,* Zhenhong Wei,1,* Huiying Lv,1 Liya Wu,1 Yingnan Cui,1 Hua Yao,1 Jing Li,1 Hao Zhang,2 Bai Yang,2 Jinlan Jiang1 1Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China; 2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, People’s Republic of China *These authors contributed equally to this work Background: Developing new methods to deliver cells to the injured tissue is a critical factor in translating cell therapeutics research into clinical use; therefore, there is a need for improved cell homing capabilities. Materials and methods: In this study, we demonstrated the effects of labeling rat bone marrow-derived mesenchymal stem cells (MSCs) with fabricated polydopamine (PDA)-capped Fe3O4 (Fe3O4@PDA) superparticles employing preassembled Fe3O4 nanoparticles as the cores. Results: We found that the Fe3O4@PDA composite superparticles exhibited no adverse effects on MSC characteristics. Moreover, iron oxide nanoparticles increased the number of MSCs in the S-phase, their proliferation index and migration ability, and their secretion of vascular endothelial growth factor relative to unlabeled MSCs. Interestingly, nanoparticles not only promoted the expression of C-X-C chemokine receptor 4 but also increased the expression of the migration-related proteins c-Met and C-C motif chemokine receptor 1, which has not been reported previously. Furthermore, the MSC-loaded nanoparticles exhibited improved homing and anti-inflammatory abilities in the absence of external magnetic fields in vivo. Conclusion: These results indicated that iron oxide nanoparticles rendered MSCs more favorable for use in injury treatment with no negative effects on MSC properties, suggesting their potential clinical efficacy. Keywords: mesenchymal stem cells, migration, Fe3O4 nanoparticles, polydopamine
format article
author Li X
Wei Z
Lv H
Wu L
Cui Y
Yao H
Li J
Zhang H
Yang B
Jiang J
author_facet Li X
Wei Z
Lv H
Wu L
Cui Y
Yao H
Li J
Zhang H
Yang B
Jiang J
author_sort Li X
title Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites
title_short Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites
title_full Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites
title_fullStr Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites
title_full_unstemmed Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites
title_sort iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites
publisher Dove Medical Press
publishDate 2019
url https://doaj.org/article/89cce189d81e4059a26b02dac790686d
work_keys_str_mv AT lix ironoxidenanoparticlespromotethemigrationofmesenchymalstemcellstoinjurysites
AT weiz ironoxidenanoparticlespromotethemigrationofmesenchymalstemcellstoinjurysites
AT lvh ironoxidenanoparticlespromotethemigrationofmesenchymalstemcellstoinjurysites
AT wul ironoxidenanoparticlespromotethemigrationofmesenchymalstemcellstoinjurysites
AT cuiy ironoxidenanoparticlespromotethemigrationofmesenchymalstemcellstoinjurysites
AT yaoh ironoxidenanoparticlespromotethemigrationofmesenchymalstemcellstoinjurysites
AT lij ironoxidenanoparticlespromotethemigrationofmesenchymalstemcellstoinjurysites
AT zhangh ironoxidenanoparticlespromotethemigrationofmesenchymalstemcellstoinjurysites
AT yangb ironoxidenanoparticlespromotethemigrationofmesenchymalstemcellstoinjurysites
AT jiangj ironoxidenanoparticlespromotethemigrationofmesenchymalstemcellstoinjurysites
_version_ 1718401444113022976