A new hybrid fuzzy time series model with an application to predict PM10 concentration
Fuzzy time series (FTS) forecasting models show a great performance in predicting time series, such as air pollution time series. However, they have caused major issues by utilizing random partitioning of the universe of discourse and ignoring repeated fuzzy sets. In this study, a novel hybrid forec...
Enregistré dans:
Auteurs principaux: | Yousif Alyousifi, Mahmod Othman, Abdullah Husin, Upaka Rathnayake |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/89cea552632c48a8a3bb90073d4b051c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Ostrowski-Sugeno fuzzy inequalities
par: Anastassiou,George A.
Publié: (2019) -
Contamination characteristics, source analysis and health risk assessment of heavy metals in the soil in Shi River Basin in China based on high density sampling
par: Yuqi Zhang, et autres
Publié: (2021) -
Correspondence Letter
par: Lorena Espinoza, et autres
Publié: (2021) -
Environmentally relevant concentrations of arsenic induces apoptosis in the early life stage of zebrafish
par: Wen-Jun Zhao, et autres
Publié: (2021) -
Short-term mortality risks of daily PM2.5-bound metals in urban region of Guangzhou, China, an indication of health risks of PM2.5 exposure
par: Ling-Chuan Guo, et autres
Publié: (2021)