Benign design intumescent flame-retarding aliphatic waterborne polyester coatings modified by precipitated silica aerogel and aluminum powder
The organic-inorganic hybrid intumescent flame retardant coatings (IFRCs) is an efficient and ecological strategy to obtain excellent fireproof performance. The benign design on aliphatic waterborne polyester (AWP)-based IFRCs is modified by silicon-based aerogels and aluminum powder simultaneously,...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/89d62c39c7ee4c2985ec9722660f8903 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The organic-inorganic hybrid intumescent flame retardant coatings (IFRCs) is an efficient and ecological strategy to obtain excellent fireproof performance. The benign design on aliphatic waterborne polyester (AWP)-based IFRCs is modified by silicon-based aerogels and aluminum powder simultaneously, which is characterized by various techniques to explore the flame retardant mechanism. The results show that an appropriate precipitated silica aerogel (0.45 wt%) and aluminum powder (0.8 wt%) impart synergetic flame-retarding and smoke suppression effect to the AWP-based IFRCs, evidenced by the reduced fire growth index of 0.50 from 0.63 kW m−2 s−1, as well as the raised flame retardancy index of 2.52 from 1. Because the labyrinth barrier effect of amorphous silica-alumina gels derives from the in-situ cross-linking between the active Si(OH)4 and AlOOH or Al(OH)3, as well as the enhanced adhesive property between silanols and plywood surface, which facilitates the ceramic-like charring of AWP-based IFRCs, leading to the formation of continuous and tortuous char. It expands the design methods and flame-retarding mechanism of ecological organic-inorganic hybrid IFRCs. |
---|