Predicting Ventricular Defibrillation Results Using Learning Models: A Design Practice and Performance Analysis
This work proposes a learning model to predict the outcome of electrical defibrillation from ECG signals in ventricular fibrillation (VF) periods, which is a lethal situation happening when a patient is suffering cardiac arrest. An animal experiment of rats is conducted to obtain the ECG signals and...
Guardado en:
Autores principales: | Dean-Chang Ling, Min-Shan Tsai, Dean-An Ling, Shang-Ho Tsai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/89ed548831e547019422747a4dcd5b37 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Guest Editorial Circuits and Systems for Flexible Electronics
por: Lian Yong, et al.
Publicado: (2021) -
Editorial to the Special Section on Optimized Image/Video Coding Based on Deep Learning
por: Zhibo Chen, et al.
Publicado: (2021) -
Bilateral comparison in Rockwell C hardness scale between INRiM and GUM
por: J.D. Fidelus, et al.
Publicado: (2021) -
Design of weight volume automatic measuring device based on hydrostatic comparison method
por: Lei dong, et al.
Publicado: (2021) -
Comparison of High-Order Programmable Mismatch Shaping Bandpass DEM Implementations Applicable to Nyquist-Rate D/A Converters
por: Shantanu Mehta, et al.
Publicado: (2021)