Shaping ability of 2Shape and NeoNiTi rotary instruments in preparation of curved canals using micro-computed tomography

Abstract Background Various systems of nickel-titanium (NiTi) instrument have long been commercially available. However, the preparation of narrow and curved root canals has always been challenging. The purpose of this study was to compare the shaping ability of two NiTi systems (2Shape and NeoNiTi)...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ibrahim Faisal, Rajab Saif, Mona Alsulaiman, Zuhair S. Natto
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
Acceso en línea:https://doaj.org/article/89ee4b5b3cdf4eafb3c477a118d7d156
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:89ee4b5b3cdf4eafb3c477a118d7d156
record_format dspace
spelling oai:doaj.org-article:89ee4b5b3cdf4eafb3c477a118d7d1562021-11-21T12:32:26ZShaping ability of 2Shape and NeoNiTi rotary instruments in preparation of curved canals using micro-computed tomography10.1186/s12903-021-01961-x1472-6831https://doaj.org/article/89ee4b5b3cdf4eafb3c477a118d7d1562021-11-01T00:00:00Zhttps://doi.org/10.1186/s12903-021-01961-xhttps://doaj.org/toc/1472-6831Abstract Background Various systems of nickel-titanium (NiTi) instrument have long been commercially available. However, the preparation of narrow and curved root canals has always been challenging. The purpose of this study was to compare the shaping ability of two NiTi systems (2Shape and NeoNiTi) in severely curved root canals with different morphological patterns using micro-computed tomography (Micro-CT). Methods A total of 22 human extracted permanent teeth of mandibular first molars, with the exact mesial angle of curvature of 25 and 35 degrees, according to Schneider’s technique, were distributed randomly into two groups (group I: 2Shape, group II: NeoNiTi) based on the rotary system used (n = 22). The groups were subdivided into two subgroups corresponding to the angle of canal curvature (25° and 35°) (n = 11). Canals were scanned using Micro-CT pre- and post-preparation to assess the volume of dentin removed; canal transportation; and canal centering ratio at 3, 6, and 9 mm from the apex. The Mann–Whitney U test was utilized to determine any significant differences between the two systems. The level of statistical significance was set at p < 0.05. Results There was no significant difference between the two groups in volume of dentin removed; canal transportation; and centering ability for 25° and 35° canal curvatures at 3, 6, and 9 mm from the apex (coronal, middle, and apical) thirds (p > 0.05). At the middle third, the NeoNiTi group demonstrated a statistically significant increase in volume of dentin removed for 35° canal curvatures compared to the 2Shape group. Conclusion Within the limitation of our in vitro study, 2Shape and NeoNiTi systems with severely curved canals were confirmed to be relatively safe in preparation and to respect original canal anatomy. Nevertheless, NeoNiTi instruments produced more centered preparation and minimal canal deviation compared to the 2Shape system.Ibrahim FaisalRajab SaifMona AlsulaimanZuhair S. NattoBMCarticleDentistryRK1-715ENBMC Oral Health, Vol 21, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Dentistry
RK1-715
spellingShingle Dentistry
RK1-715
Ibrahim Faisal
Rajab Saif
Mona Alsulaiman
Zuhair S. Natto
Shaping ability of 2Shape and NeoNiTi rotary instruments in preparation of curved canals using micro-computed tomography
description Abstract Background Various systems of nickel-titanium (NiTi) instrument have long been commercially available. However, the preparation of narrow and curved root canals has always been challenging. The purpose of this study was to compare the shaping ability of two NiTi systems (2Shape and NeoNiTi) in severely curved root canals with different morphological patterns using micro-computed tomography (Micro-CT). Methods A total of 22 human extracted permanent teeth of mandibular first molars, with the exact mesial angle of curvature of 25 and 35 degrees, according to Schneider’s technique, were distributed randomly into two groups (group I: 2Shape, group II: NeoNiTi) based on the rotary system used (n = 22). The groups were subdivided into two subgroups corresponding to the angle of canal curvature (25° and 35°) (n = 11). Canals were scanned using Micro-CT pre- and post-preparation to assess the volume of dentin removed; canal transportation; and canal centering ratio at 3, 6, and 9 mm from the apex. The Mann–Whitney U test was utilized to determine any significant differences between the two systems. The level of statistical significance was set at p < 0.05. Results There was no significant difference between the two groups in volume of dentin removed; canal transportation; and centering ability for 25° and 35° canal curvatures at 3, 6, and 9 mm from the apex (coronal, middle, and apical) thirds (p > 0.05). At the middle third, the NeoNiTi group demonstrated a statistically significant increase in volume of dentin removed for 35° canal curvatures compared to the 2Shape group. Conclusion Within the limitation of our in vitro study, 2Shape and NeoNiTi systems with severely curved canals were confirmed to be relatively safe in preparation and to respect original canal anatomy. Nevertheless, NeoNiTi instruments produced more centered preparation and minimal canal deviation compared to the 2Shape system.
format article
author Ibrahim Faisal
Rajab Saif
Mona Alsulaiman
Zuhair S. Natto
author_facet Ibrahim Faisal
Rajab Saif
Mona Alsulaiman
Zuhair S. Natto
author_sort Ibrahim Faisal
title Shaping ability of 2Shape and NeoNiTi rotary instruments in preparation of curved canals using micro-computed tomography
title_short Shaping ability of 2Shape and NeoNiTi rotary instruments in preparation of curved canals using micro-computed tomography
title_full Shaping ability of 2Shape and NeoNiTi rotary instruments in preparation of curved canals using micro-computed tomography
title_fullStr Shaping ability of 2Shape and NeoNiTi rotary instruments in preparation of curved canals using micro-computed tomography
title_full_unstemmed Shaping ability of 2Shape and NeoNiTi rotary instruments in preparation of curved canals using micro-computed tomography
title_sort shaping ability of 2shape and neoniti rotary instruments in preparation of curved canals using micro-computed tomography
publisher BMC
publishDate 2021
url https://doaj.org/article/89ee4b5b3cdf4eafb3c477a118d7d156
work_keys_str_mv AT ibrahimfaisal shapingabilityof2shapeandneonitirotaryinstrumentsinpreparationofcurvedcanalsusingmicrocomputedtomography
AT rajabsaif shapingabilityof2shapeandneonitirotaryinstrumentsinpreparationofcurvedcanalsusingmicrocomputedtomography
AT monaalsulaiman shapingabilityof2shapeandneonitirotaryinstrumentsinpreparationofcurvedcanalsusingmicrocomputedtomography
AT zuhairsnatto shapingabilityof2shapeandneonitirotaryinstrumentsinpreparationofcurvedcanalsusingmicrocomputedtomography
_version_ 1718418956774014976