On beta-time fractional biological population model with abundant solitary wave structures
The ongoing study deals with various forms of solutions for the biological population model with a novel beta-time derivative operators. This model is very conducive to explain the enlargement of viruses, parasites and diseases. This configuration of the aforesaid classical scheme is scouted for its...
Guardado en:
Autores principales: | Kottakkaran Sooppy Nisar, Armando Ciancio, Khalid K. Ali, M.S. Osman, Carlo Cattani, Dumitru Baleanu, Asim Zafar, M. Raheel, M. Azeem |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/89f015a9d9cd43218c7eea564fce7133 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Solitary wave patterns and conservation laws of fourth-order nonlinear symmetric regularized long-wave equation arising in plasma
por: Amjad Hussain, et al.
Publicado: (2021) -
Analytical and numerical treatment to the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation
por: Ali Khalid K., et al.
Publicado: (2021) -
Novel approach to the analysis of fifth-order weakly nonlocal fractional Schrödinger equation with Caputo derivative
por: Lanre Akinyemi, et al.
Publicado: (2021) -
A new formulation of finite difference and finite volume methods for solving a space fractional convection–diffusion model with fewer error estimates
por: Reem Edwan, et al.
Publicado: (2021) -
Nematicons in liquid crystals with Kerr Law by sub-equation method
por: Serbay Duran, et al.
Publicado: (2022)