Stress testing reveals gaps in clinic readiness of image-based diagnostic artificial intelligence models
Abstract Artificial intelligence models match or exceed dermatologists in melanoma image classification. Less is known about their robustness against real-world variations, and clinicians may incorrectly assume that a model with an acceptable area under the receiver operating characteristic curve or...
Guardado en:
Autores principales: | Albert T. Young, Kristen Fernandez, Jacob Pfau, Rasika Reddy, Nhat Anh Cao, Max Y. von Franque, Arjun Johal, Benjamin V. Wu, Rachel R. Wu, Jennifer Y. Chen, Raj P. Fadadu, Juan A. Vasquez, Andrew Tam, Michael J. Keiser, Maria L. Wei |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/89fc976ac492433b853698240fbfcfbb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Readiness for voice assistants to support healthcare delivery during a health crisis and pandemic
por: Emre Sezgin, et al.
Publicado: (2020) -
Artificial intelligence for the diagnosis of heart failure
por: Dong-Ju Choi, et al.
Publicado: (2020) -
An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department
por: Farah E. Shamout, et al.
Publicado: (2021) -
Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing
por: Erping Long, et al.
Publicado: (2020) -
Patient apprehensions about the use of artificial intelligence in healthcare
por: Jordan P. Richardson, et al.
Publicado: (2021)