Wintertime subarctic new particle formation from Kola Peninsula sulfur emissions

<p>The metallurgical industry in the Kola Peninsula, north-west Russia, form, after Norilsk, Siberia, the second largest source of air pollution in the Arctic and subarctic domain. Sulfur dioxide (SO<span class="inline-formula"><sub>2</sub>)</span> emissions f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. Sipilä, N. Sarnela, K. Neitola, T. Laitinen, D. Kemppainen, L. Beck, E.-M. Duplissy, S. Kuittinen, T. Lehmusjärvi, J. Lampilahti, V.-M. Kerminen, K. Lehtipalo, P. P. Aalto, P. Keronen, E. Siivola, P. A. Rantala, D. R. Worsnop, M. Kulmala, T. Jokinen, T. Petäjä
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/8a0f43f75bb24cd789d8bb0c6e34a418
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<p>The metallurgical industry in the Kola Peninsula, north-west Russia, form, after Norilsk, Siberia, the second largest source of air pollution in the Arctic and subarctic domain. Sulfur dioxide (SO<span class="inline-formula"><sub>2</sub>)</span> emissions from the ore smelters are transported to wide areas, including Finnish Lapland. We performed investigations on concentrations of SO<span class="inline-formula"><sub>2</sub></span>, aerosol precursor vapours, aerosol and ion cluster size distributions together with chemical composition measurements of freshly formed clusters at the SMEAR I station in Finnish Lapland relatively close (<span class="inline-formula">∼</span> 300 km) to the Kola Peninsula industrial sites during the winter 2019–2020. We show that highly concentrated SO<span class="inline-formula"><sub>2</sub></span> from smelter emissions is converted to sulfuric acid (H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub>)</span> in sufficient concentrations to drive new particle formation hundreds of kilometres downwind from the emission sources, even at very low solar radiation intensities. Observed new particle formation is primarily initiated by H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>–ammonia (negative-)ion-induced nucleation. Particle growth to cloud condensation nuclei (CCN) sizes was concluded to result from sulfuric acid condensation. However, air mass advection had a large role in modifying aerosol size distributions, and other growth mechanisms and condensation of other compounds cannot be fully excluded. Our results demonstrate the dominance of SO<span class="inline-formula"><sub>2</sub></span> emissions in controlling wintertime aerosol and CCN concentrations in the subarctic region with a heavily polluting industry.</p>