Impact of plasma 5-hydroxyindoleacetic acid, a serotonin metabolite, on clinical outcome in septic shock, and its effect on vascular permeability

Abstract Septic shock is characterized by dysregulated vascular permeability. We hypothesized that the vascular permeability of endothelial cells (ECs) would be regulated by serotonin via serotonin-Rho-associated kinase (ROCK) signaling. We aimed to determine the impact of 5-hydroxyindoleacetic acid...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Takeshi Tanaka, Masahiko Mori, Motohiro Sekino, Ushio Higashijima, Masahiro Takaki, Yoshiro Yamashita, Satoshi Kakiuchi, Masato Tashiro, Konosuke Morimoto, Osamu Tasaki, Koichi Izumikawa
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8a138fd391aa49a0b38ffb1150730c77
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Septic shock is characterized by dysregulated vascular permeability. We hypothesized that the vascular permeability of endothelial cells (ECs) would be regulated by serotonin via serotonin-Rho-associated kinase (ROCK) signaling. We aimed to determine the impact of 5-hydroxyindoleacetic acid (5-HIAA) on septic shock as a novel biomarker. Plasma 5-HIAA levels and disease severity indices were obtained from 47 patients with sepsis. The association between 5-HIAA levels and severity indices was analyzed. Permeability upon serotonin stimulation was determined using human pulmonary microvascular ECs. 5-HIAA were significantly higher in septic shock patients than in patients without shock or healthy controls (p = 0.004). These elevated levels were correlated with severity indexes (SOFA score [p < 0.001], APACHE II [p < 0.001], and PaO2:FiO2 [p = 0.02]), and longitudinally associated with worse clinical outcomes (mechanical ventilation duration [p = 0.009] and ICU duration [p = 0.01]). In the experiment, serotonin increased the permeability of ECs, which was inhibited by the ROCK inhibitor (p < 0.001). Serotonin increases vascular permeability of ECs via ROCK signaling. This suggests a novel mechanism by which serotonin disrupts endothelial barriers via ROCK signaling and causes the pathogenesis of septic shock with a vascular leak. Serotonin serves as a novel biomarker of vascular permeability.