CMR-based T1-mapping offers superior diagnostic value compared to longitudinal strain-based assessment of relative apical sparing in cardiac amyloidosis

Abstract Cardiac amyloidosis (CA) is an infiltrative disease. In the present study, we compared the diagnostic accuracy of cardiovascular magnetic resonance (CMR)-based T1-mapping and subsequent extracellular volume fraction (ECV) measurement and longitudinal strain analysis in the same patients wit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dennis Korthals, Grigorios Chatzantonis, Michael Bietenbeck, Claudia Meier, Philipp Stalling, Ali Yilmaz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8a16b1e87fd6457897d939f7377433ab
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Cardiac amyloidosis (CA) is an infiltrative disease. In the present study, we compared the diagnostic accuracy of cardiovascular magnetic resonance (CMR)-based T1-mapping and subsequent extracellular volume fraction (ECV) measurement and longitudinal strain analysis in the same patients with (a) biopsy-proven cardiac amyloidosis (CA) and (b) hypertrophic cardiomyopathy (HCM). N = 30 patients with CA, N = 20 patients with HCM and N = 15 healthy control patients without relevant cardiac disease underwent dedicated CMR studies. The CMR protocol included standard sequences for cine-imaging, native and post-contrast T1-mapping and late-gadolinium-enhancement. ECV measurements were based on pre- and post-contrast T1-mapping images. Feature-tracking analysis was used to calculate 3D left ventricular longitudinal strain (LV-LS) in basal, mid and apical short-axis cine-images and to assess the presence of relative apical sparing. Receiver-operating-characteristic analysis revealed an area-under-the-curve regarding the differentiation of CA from HCM of 0.984 for native T1-mapping (p < 0.001), of 0.985 for ECV (p < 0.001) and only 0.740 for the “apical-to-(basal + midventricular)”-ratio of LV-LS (p = 0.012). A multivariable logistical regression analysis showed that ECV was the only statistically significant predictor of CA when compared to the parameter LV-LS or to the parameter “apical-to-(basal + midventricular)” LV-RLS-ratio. Native T1-mapping and ECV measurement are both superior to longitudinal strain measurement (with assessment of relative apical sparing) regarding the appropriate diagnosis of CA.