Mental State Detection Using Riemannian Geometry on Electroencephalogram Brain Signals
The goal of this study was to implement a Riemannian geometry (RG)-based algorithm to detect high mental workload (MWL) and mental fatigue (MF) using task-induced electroencephalogram (EEG) signals. In order to elicit high MWL and MF, the participants performed a cognitively demanding task in the fo...
Guardado en:
Autores principales: | Selina C. Wriessnegger, Philipp Raggam, Kyriaki Kostoglou, Gernot R. Müller-Putz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8a2b8f672f7442df975fcdd0edf8c575 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Anti-invariant ξ ⊥ -Riemannian Submersions From Hyperbolic β-Kenmotsu Manifolds
por: Danish Siddiqi,Mohd, et al.
Publicado: (2018) -
ON SOME INFINITESIMAL AUTOMORPHISMS OF RIEMANNIAN FOLIATION
por: CHAOUCH,MOHAMET AlÍ, et al.
Publicado: (2007) -
MITIGATING THE PSYCHOLOGICAL AND MENTAL HEALTH IMPACT ON FRONTLINE WORKERS DURING COVID-19
por: Norma Visagie
Publicado: (2020) -
Attention Detection in Virtual Environments Using EEG Signals: A Scoping Review
por: Rhaíra Helena Caetano e Souza, et al.
Publicado: (2021) -
THE EVALUATION OF MENTAL WORKLOAD IN PHYSICIANS
por: Mevlüt KARADAĞ, et al.
Publicado: (2019)