VAMPnets for deep learning of molecular kinetics
Extracting kinetic models from high-throughput molecular dynamics (MD) simulations is laborious and prone to human error. Here the authors introduce a deep learning framework that automates construction of Markov state models from MD simulation data.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8a30e6ffd9b7407e84418e912a435af9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8a30e6ffd9b7407e84418e912a435af9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8a30e6ffd9b7407e84418e912a435af92021-12-02T15:34:19ZVAMPnets for deep learning of molecular kinetics10.1038/s41467-017-02388-12041-1723https://doaj.org/article/8a30e6ffd9b7407e84418e912a435af92018-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02388-1https://doaj.org/toc/2041-1723Extracting kinetic models from high-throughput molecular dynamics (MD) simulations is laborious and prone to human error. Here the authors introduce a deep learning framework that automates construction of Markov state models from MD simulation data.Andreas MardtLuca PasqualiHao WuFrank NoéNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-11 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Andreas Mardt Luca Pasquali Hao Wu Frank Noé VAMPnets for deep learning of molecular kinetics |
description |
Extracting kinetic models from high-throughput molecular dynamics (MD) simulations is laborious and prone to human error. Here the authors introduce a deep learning framework that automates construction of Markov state models from MD simulation data. |
format |
article |
author |
Andreas Mardt Luca Pasquali Hao Wu Frank Noé |
author_facet |
Andreas Mardt Luca Pasquali Hao Wu Frank Noé |
author_sort |
Andreas Mardt |
title |
VAMPnets for deep learning of molecular kinetics |
title_short |
VAMPnets for deep learning of molecular kinetics |
title_full |
VAMPnets for deep learning of molecular kinetics |
title_fullStr |
VAMPnets for deep learning of molecular kinetics |
title_full_unstemmed |
VAMPnets for deep learning of molecular kinetics |
title_sort |
vampnets for deep learning of molecular kinetics |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/8a30e6ffd9b7407e84418e912a435af9 |
work_keys_str_mv |
AT andreasmardt vampnetsfordeeplearningofmolecularkinetics AT lucapasquali vampnetsfordeeplearningofmolecularkinetics AT haowu vampnetsfordeeplearningofmolecularkinetics AT franknoe vampnetsfordeeplearningofmolecularkinetics |
_version_ |
1718386848669106176 |