VAMPnets for deep learning of molecular kinetics

Extracting kinetic models from high-throughput molecular dynamics (MD) simulations is laborious and prone to human error. Here the authors introduce a deep learning framework that automates construction of Markov state models from MD simulation data.

Guardado en:
Detalles Bibliográficos
Autores principales: Andreas Mardt, Luca Pasquali, Hao Wu, Frank Noé
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/8a30e6ffd9b7407e84418e912a435af9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8a30e6ffd9b7407e84418e912a435af9
record_format dspace
spelling oai:doaj.org-article:8a30e6ffd9b7407e84418e912a435af92021-12-02T15:34:19ZVAMPnets for deep learning of molecular kinetics10.1038/s41467-017-02388-12041-1723https://doaj.org/article/8a30e6ffd9b7407e84418e912a435af92018-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02388-1https://doaj.org/toc/2041-1723Extracting kinetic models from high-throughput molecular dynamics (MD) simulations is laborious and prone to human error. Here the authors introduce a deep learning framework that automates construction of Markov state models from MD simulation data.Andreas MardtLuca PasqualiHao WuFrank NoéNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-11 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Andreas Mardt
Luca Pasquali
Hao Wu
Frank Noé
VAMPnets for deep learning of molecular kinetics
description Extracting kinetic models from high-throughput molecular dynamics (MD) simulations is laborious and prone to human error. Here the authors introduce a deep learning framework that automates construction of Markov state models from MD simulation data.
format article
author Andreas Mardt
Luca Pasquali
Hao Wu
Frank Noé
author_facet Andreas Mardt
Luca Pasquali
Hao Wu
Frank Noé
author_sort Andreas Mardt
title VAMPnets for deep learning of molecular kinetics
title_short VAMPnets for deep learning of molecular kinetics
title_full VAMPnets for deep learning of molecular kinetics
title_fullStr VAMPnets for deep learning of molecular kinetics
title_full_unstemmed VAMPnets for deep learning of molecular kinetics
title_sort vampnets for deep learning of molecular kinetics
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/8a30e6ffd9b7407e84418e912a435af9
work_keys_str_mv AT andreasmardt vampnetsfordeeplearningofmolecularkinetics
AT lucapasquali vampnetsfordeeplearningofmolecularkinetics
AT haowu vampnetsfordeeplearningofmolecularkinetics
AT franknoe vampnetsfordeeplearningofmolecularkinetics
_version_ 1718386848669106176