VAMPnets for deep learning of molecular kinetics
Extracting kinetic models from high-throughput molecular dynamics (MD) simulations is laborious and prone to human error. Here the authors introduce a deep learning framework that automates construction of Markov state models from MD simulation data.
Guardado en:
Autores principales: | Andreas Mardt, Luca Pasquali, Hao Wu, Frank Noé |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8a30e6ffd9b7407e84418e912a435af9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: VAMPnets for deep learning of molecular kinetics
por: Andreas Mardt, et al.
Publicado: (2018) -
Large-scale simulation of biomembranes incorporating realistic kinetics into coarse-grained models
por: Mohsen Sadeghi, et al.
Publicado: (2020) -
Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations
por: Fabian Paul, et al.
Publicado: (2017) -
Author Correction: Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations
por: Fabian Paul, et al.
Publicado: (2018) -
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
por: K. T. Schütt, et al.
Publicado: (2019)