High-resolution photoacoustic microscopy with deep penetration through learning
Optical-resolution photoacoustic microscopy (OR-PAM) enjoys superior spatial resolution and has received intense attention in recent years. The application, however, has been limited to shallow depths because of strong scattering of light in biological tissues. In this work, we propose to achieve de...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8a40713c4e134cddb8ff73eaf88118d3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8a40713c4e134cddb8ff73eaf88118d3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8a40713c4e134cddb8ff73eaf88118d32021-11-14T04:32:49ZHigh-resolution photoacoustic microscopy with deep penetration through learning2213-597910.1016/j.pacs.2021.100314https://doaj.org/article/8a40713c4e134cddb8ff73eaf88118d32022-03-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2213597921000732https://doaj.org/toc/2213-5979Optical-resolution photoacoustic microscopy (OR-PAM) enjoys superior spatial resolution and has received intense attention in recent years. The application, however, has been limited to shallow depths because of strong scattering of light in biological tissues. In this work, we propose to achieve deep-penetrating OR-PAM performance by using deep learning enabled image transformation on blurry living mouse vascular images that were acquired with an acoustic-resolution photoacoustic microscopy (AR-PAM) setup. A generative adversarial network (GAN) was trained in this study and improved the imaging lateral resolution of AR-PAM from 54.0 µm to 5.1 µm, comparable to that of a typical OR-PAM (4.7 µm). The feasibility of the network was evaluated with living mouse ear data, producing superior microvasculature images that outperforms blind deconvolution. The generalization of the network was validated with in vivo mouse brain data. Moreover, it was shown experimentally that the deep-learning method can retain high resolution at tissue depths beyond one optical transport mean free path. Whilst it can be further improved, the proposed method provides new horizons to expand the scope of OR-PAM towards deep-tissue imaging and wide applications in biomedicine.Shengfu ChengYingying ZhouJiangbo ChenHuanhao LiLidai WangPuxiang LaiElsevierarticlePhotoacoustic microscopyDeep penetrationDeep learningPhysicsQC1-999Acoustics. SoundQC221-246Optics. LightQC350-467ENPhotoacoustics, Vol 25, Iss , Pp 100314- (2022) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Photoacoustic microscopy Deep penetration Deep learning Physics QC1-999 Acoustics. Sound QC221-246 Optics. Light QC350-467 |
spellingShingle |
Photoacoustic microscopy Deep penetration Deep learning Physics QC1-999 Acoustics. Sound QC221-246 Optics. Light QC350-467 Shengfu Cheng Yingying Zhou Jiangbo Chen Huanhao Li Lidai Wang Puxiang Lai High-resolution photoacoustic microscopy with deep penetration through learning |
description |
Optical-resolution photoacoustic microscopy (OR-PAM) enjoys superior spatial resolution and has received intense attention in recent years. The application, however, has been limited to shallow depths because of strong scattering of light in biological tissues. In this work, we propose to achieve deep-penetrating OR-PAM performance by using deep learning enabled image transformation on blurry living mouse vascular images that were acquired with an acoustic-resolution photoacoustic microscopy (AR-PAM) setup. A generative adversarial network (GAN) was trained in this study and improved the imaging lateral resolution of AR-PAM from 54.0 µm to 5.1 µm, comparable to that of a typical OR-PAM (4.7 µm). The feasibility of the network was evaluated with living mouse ear data, producing superior microvasculature images that outperforms blind deconvolution. The generalization of the network was validated with in vivo mouse brain data. Moreover, it was shown experimentally that the deep-learning method can retain high resolution at tissue depths beyond one optical transport mean free path. Whilst it can be further improved, the proposed method provides new horizons to expand the scope of OR-PAM towards deep-tissue imaging and wide applications in biomedicine. |
format |
article |
author |
Shengfu Cheng Yingying Zhou Jiangbo Chen Huanhao Li Lidai Wang Puxiang Lai |
author_facet |
Shengfu Cheng Yingying Zhou Jiangbo Chen Huanhao Li Lidai Wang Puxiang Lai |
author_sort |
Shengfu Cheng |
title |
High-resolution photoacoustic microscopy with deep penetration through learning |
title_short |
High-resolution photoacoustic microscopy with deep penetration through learning |
title_full |
High-resolution photoacoustic microscopy with deep penetration through learning |
title_fullStr |
High-resolution photoacoustic microscopy with deep penetration through learning |
title_full_unstemmed |
High-resolution photoacoustic microscopy with deep penetration through learning |
title_sort |
high-resolution photoacoustic microscopy with deep penetration through learning |
publisher |
Elsevier |
publishDate |
2022 |
url |
https://doaj.org/article/8a40713c4e134cddb8ff73eaf88118d3 |
work_keys_str_mv |
AT shengfucheng highresolutionphotoacousticmicroscopywithdeeppenetrationthroughlearning AT yingyingzhou highresolutionphotoacousticmicroscopywithdeeppenetrationthroughlearning AT jiangbochen highresolutionphotoacousticmicroscopywithdeeppenetrationthroughlearning AT huanhaoli highresolutionphotoacousticmicroscopywithdeeppenetrationthroughlearning AT lidaiwang highresolutionphotoacousticmicroscopywithdeeppenetrationthroughlearning AT puxianglai highresolutionphotoacousticmicroscopywithdeeppenetrationthroughlearning |
_version_ |
1718429967887368192 |