Laser-driven proton acceleration from ultrathin foils with nanoholes

Abstract Structured solid targets are widely investigated to increase the energy absorption of high-power laser pulses so as to achieve efficient ion acceleration. Here we report the first experimental study of the maximum energy of proton beams accelerated from sub-micrometric foils perforated with...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Giada Cantono, Alexander Permogorov, Julien Ferri, Evgeniya Smetanina, Alexandre Dmitriev, Anders Persson, Tünde Fülöp, Claes-Göran Wahlström
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8a420eb249f5431f8c06f86ac19d62ad
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8a420eb249f5431f8c06f86ac19d62ad
record_format dspace
spelling oai:doaj.org-article:8a420eb249f5431f8c06f86ac19d62ad2021-12-02T13:30:12ZLaser-driven proton acceleration from ultrathin foils with nanoholes10.1038/s41598-021-84264-z2045-2322https://doaj.org/article/8a420eb249f5431f8c06f86ac19d62ad2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84264-zhttps://doaj.org/toc/2045-2322Abstract Structured solid targets are widely investigated to increase the energy absorption of high-power laser pulses so as to achieve efficient ion acceleration. Here we report the first experimental study of the maximum energy of proton beams accelerated from sub-micrometric foils perforated with holes of nanometric size. By showing the lack of energy enhancement in comparison to standard flat foils, our results suggest that the high contrast routinely achieved with a double plasma mirror does not prevent damaging of the nanostructures prior to the main interaction. Particle-in-cell simulations support that even a short scale length plasma, formed in the last hundreds of femtoseconds before the peak of an ultrashort laser pulse, fills the holes and hinders enhanced electron heating. Our findings reinforce the need for improved laser contrast, as well as for accurate control and diagnostics of on-target plasma formation.Giada CantonoAlexander PermogorovJulien FerriEvgeniya SmetaninaAlexandre DmitrievAnders PerssonTünde FülöpClaes-Göran WahlströmNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Giada Cantono
Alexander Permogorov
Julien Ferri
Evgeniya Smetanina
Alexandre Dmitriev
Anders Persson
Tünde Fülöp
Claes-Göran Wahlström
Laser-driven proton acceleration from ultrathin foils with nanoholes
description Abstract Structured solid targets are widely investigated to increase the energy absorption of high-power laser pulses so as to achieve efficient ion acceleration. Here we report the first experimental study of the maximum energy of proton beams accelerated from sub-micrometric foils perforated with holes of nanometric size. By showing the lack of energy enhancement in comparison to standard flat foils, our results suggest that the high contrast routinely achieved with a double plasma mirror does not prevent damaging of the nanostructures prior to the main interaction. Particle-in-cell simulations support that even a short scale length plasma, formed in the last hundreds of femtoseconds before the peak of an ultrashort laser pulse, fills the holes and hinders enhanced electron heating. Our findings reinforce the need for improved laser contrast, as well as for accurate control and diagnostics of on-target plasma formation.
format article
author Giada Cantono
Alexander Permogorov
Julien Ferri
Evgeniya Smetanina
Alexandre Dmitriev
Anders Persson
Tünde Fülöp
Claes-Göran Wahlström
author_facet Giada Cantono
Alexander Permogorov
Julien Ferri
Evgeniya Smetanina
Alexandre Dmitriev
Anders Persson
Tünde Fülöp
Claes-Göran Wahlström
author_sort Giada Cantono
title Laser-driven proton acceleration from ultrathin foils with nanoholes
title_short Laser-driven proton acceleration from ultrathin foils with nanoholes
title_full Laser-driven proton acceleration from ultrathin foils with nanoholes
title_fullStr Laser-driven proton acceleration from ultrathin foils with nanoholes
title_full_unstemmed Laser-driven proton acceleration from ultrathin foils with nanoholes
title_sort laser-driven proton acceleration from ultrathin foils with nanoholes
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/8a420eb249f5431f8c06f86ac19d62ad
work_keys_str_mv AT giadacantono laserdrivenprotonaccelerationfromultrathinfoilswithnanoholes
AT alexanderpermogorov laserdrivenprotonaccelerationfromultrathinfoilswithnanoholes
AT julienferri laserdrivenprotonaccelerationfromultrathinfoilswithnanoholes
AT evgeniyasmetanina laserdrivenprotonaccelerationfromultrathinfoilswithnanoholes
AT alexandredmitriev laserdrivenprotonaccelerationfromultrathinfoilswithnanoholes
AT anderspersson laserdrivenprotonaccelerationfromultrathinfoilswithnanoholes
AT tundefulop laserdrivenprotonaccelerationfromultrathinfoilswithnanoholes
AT claesgoranwahlstrom laserdrivenprotonaccelerationfromultrathinfoilswithnanoholes
_version_ 1718392927289344000