Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms
This work aims to model the combined cycle power plant (CCPP) using different algorithms. The algorithms used are Ridge, Linear regressor (LR), and upport vector regressor (SVR). The CCPP energy output data collected as a factor of thermal input variables, mainly exhaust vacuum, ambient temperature,...
Guardado en:
Autores principales: | Asif Afzal, Saad Alshahrani, Abdulrahman Alrobaian, Abdulrajak Buradi, Sher Afghan Khan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8a495f4163774560aab862a28fd4c494 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Geospatial Least Squares Support Vector Regression Fused with Spatial Weight Matrix
por: Haiqi Wang, et al.
Publicado: (2021) -
Effects of Strontium Ranelate on Alveolar Ridge Morphology Augmentation
por: Xuan,Jing, et al.
Publicado: (2017) -
On some rare Oplophoridae (Caridea, Decapoda) from the South Mid-Atlantic Ridge
por: Cardoso,Irene
Publicado: (2013) -
Alveolar Ridge Splitting for Implant Installation in Atrophic Sites: Analysis of a Case Series
por: Olate,Sergio, et al.
Publicado: (2015) -
Anatomical Characteristics of Infra-Lamina Ridge in Chinese Population
por: Li,Xiao-he, et al.
Publicado: (2014)